Profile of cytokines involved in the pathogenesis of atherosclerosis in nuclear industry workers exposed to chronic radiation
- Авторлар: Oslina D.S.1, Rybkina V.L.1, Adamova G.V.1, Azizova T.V.1
-
Мекемелер:
- South Ural Federal Scientific and Clinical Center of Medical Biophysics of the FMBA of Russia
- Шығарылым: Том 65, № 2 (2025)
- Беттер: 168-176
- Бөлім: Radiation Immunology
- URL: https://bakhtiniada.ru/0869-8031/article/view/308697
- DOI: https://doi.org/10.31857/S0869803125020045
- EDN: https://elibrary.ru/lowwfu
- ID: 308697
Дәйексөз келтіру
Аннотация
Chronic irradiation can have an immune-modifying effect by changing the balance between pro-inflammatory and anti-inflammatory cytokines, which triggers a mechanism of self-sustaining chronic inflammation. According to modern concepts, chronic inflammation plays a significant role in atherosclerosis progression. The purpose of this work is to evaluate the profile of cytokines involved in the pathogenesis of atherosclerosis in workers exposed to chronic radiation.. Two groups were formed for the study: the main group (workers of a radiation-hazardous enterprise who were exposed to chronic radiation) and the controls (residents of Ozersk city without any contact with occupational exposure). The content of cytokines (IL-6, MCP-1, IFNγ, IL-12p70 and IL-17A) in peripheral blood serum was determined by solid-phase ELISA. There were no statistically significant differences in the content of serum cytokines IL-6, IFNy, IL-12p70 and IL-17A. The content of MCP-1 was statistically significantly higher in the main group and in men of the main group when compared with the controls. The content of MCP-1 was statistically significantly higher, and IL-12p70 was statistically significantly lower in the main group with diseases caused by atherosclerosis than in the control group. Workers of radiation-hazardous enterprises with atherosclerosis-related diseases who have been exposed to chronic radiation have changes in the content of pro-inflammatory cytokines that can contribute to the progression of the disease.
Негізгі сөздер
Авторлар туралы
D. Oslina
South Ural Federal Scientific and Clinical Center of Medical Biophysics of the FMBA of Russia
Хат алмасуға жауапты Автор.
Email: clinic@subi.su
Ozyorsk, Russia
V. Rybkina
South Ural Federal Scientific and Clinical Center of Medical Biophysics of the FMBA of Russia
Email: clinic@subi.su
Ozyorsk, Russia
G. Adamova
South Ural Federal Scientific and Clinical Center of Medical Biophysics of the FMBA of Russia
Email: clinic@subi.su
Ozyorsk, Russia
T. Azizova
South Ural Federal Scientific and Clinical Center of Medical Biophysics of the FMBA of Russia
Email: clinic@subi.su
Ozyorsk, Russia
Әдебиет тізімі
- United Nations Scientific Committee on the Effects of Atomic Radiation. Epidemiological evaluation of cardiovascular disease and other non–cancer diseases; Vol. I: scientific annexes B. New York: United Nations, 2006.
- Little M.P., Bazyka D., Berrington de Gonzalez A. et al. A Historical Survey of Key Epidemiological Studies of Ionizing Radiation Exposure. Radiat. Res. 2024;202(2):432–487. https://doi: 10.1667/RADE-24-00021.1
- Azizova T.V., Grigoryeva E.S., Batistatou E. et al. An Assessment of Radiation-Associated Risk of Mo- rtality from Circulatory Disease in the Cohorts of Mayak and Sellafield Nuclear Workers. Radiat. Res. 2018;189(4):371–388. 10.1667/RR14468.1' target='_blank'>https://doi: 10.1667/RR14468.1
- Tang F.R., Loganovsky K. Low dose or low dose rate ionizing radiation-induced health effect in the human. J. Environ. Radioact. 2018;192:32–47. https://doi: 10.1016/j.jenvrad.2018.05.018.
- Little M.P., Azizova T.V., Richardson D.B. et al. Ionising radiation and cardiovascular disease: systematic review and meta-analysis. BMJ. 2023;380:e072924. https://doi: 10.1136/bmj-2022-072924
- Tapio S., Little M.P., Kaiser J.C, et al. Ionizing radiation-induced circulatory and metabolic diseases. Environ. Int. 2021;146:106235. 10.1016/j' target='_blank'>https://doi: 10.1016/j. envint.2020.106235
- Azizova T.V., Bannikova M.V., Briks K.V. et al. Incidence risks for subtypes of heart diseases in a Russian cohort of Mayak Production Association nuclear workers. Radiat. Environ. Biophys. 2023;62(1):51–71. https://doi: 10.1007/s00411-022-01005-0
- Azizova T.V., Moseeva M.B., Grigoryeva E.S. et al. Incidence risks for cerebrovascular diseases and types of stroke in a cohort of Mayak PA workers. Radiat. Environ. Biophys. 2022;61(1):5–16. https://doi: 10.1007/s00411-022-00966-6
- Libby P. Inflammation and the pathogenesis of atherosclerosis. Vascul. Pharmacol. 2024;154:107255. https://doi: 10.1016/j.vph.2023.107255
- Welsh P., Grassia G., Botha S. et al. Targeting inflammation to reduce cardiovascular disease risk: a realistic clinical prospect? Br. J. Pharmacol. 2017;174(22): 3898–3913. 10.1111/bph.13818' target='_blank'>https://doi: 10.1111/bph.13818
- Geovanini G.R., Libby P. Atherosclerosis and inflammation: overview and updates. Clin. Sci. (Lond.). 2018;132(12):1243–1252. 10.1042/CS20180306' target='_blank'>https://doi: 10.1042/CS20180306
- Stone P.H., Libby P., Boden W.E. Fundamental Pathobiology of Coronary Atherosclerosis and Clinical Implications for Chronic Ischemic Heart Disease Management-The Plaque Hypothesis: A Narrative Review. JAMA Cardiol. 2023;8(2):192–201. https://doi: 10.1001/jamacardio.2022.3926
- Markin A.M., Markina Y.V., Bogatyreva A.I. et al. The Role of Cytokines in Cholesterol Accumulation in Cells and Atherosclerosis Progression. Int. J. Mol. Sci. 2023;24(7):6426. https://doi: 10.3390/ijms24076426
- Posadas-Sánchez R., Vargas-Alarcón G. Innate Immunity in Coronary Disease. The Role of Interleukin-12 Cytokine Family in Atherosclerosis. Rev. Invest. Clin. 2018;70(1):5–17. https:// doi: 10.24875/RIC.17002335
- Shang D., Liu H., Tu Z. Pro-inflammatory cytokines mediating senescence of vascular endothelial cells in atherosclerosis. Fund. Clin. Pharmacol. 2023;37(5):928–936. https://doi: 10.1111/fcp.12915
- Fatkhullina A.R., Peshkova I.O., Koltsova E.K. The Role of Cytokines in the Development of Atherosclerosis. Biochemistry. 2016;81(11):1358–1370. 10.1134/S0006297916110134' target='_blank'>https://doi: 10.1134/S0006297916110134
- Дутова С.В., Саранчина Ю.В., Карпова М.Р. и др. Цитокины и атеросклероз – новые направления исследований. Бюллетень сибирской медицины. 2018;17(4):199–207. [Dutova SV, Saranchina YuV, Karpova MR, et al. Citokiny i ateroskleroz – novye napravleniya issledovanij. Byulleten’ sibirskoj mediciny. 2018;17(4)199–207. (In Russ.)]. https://doi.org: 10.20538/1682-0363-2018-4-199–207
- Yiming Xing, Xianhe Lin. Challenges and advances in the management of inflammation in atherosclerosis. J. Advanc. Res. 2025;71:317–335. https://doi.org/10.1016/j.jare.2024.06.016
- Attiq A., Afzal Sh., Ahmad W., Kandeel M. Hegemony of inflammation in atherosclerosis and coronary artery disease. Eur. J. Pharmacol. 2024;966:176338. https://doi.org/10.1016/j.ejphar.2024.176338
- Арабидзе Г.Г. Клиническая иммунология атеросклероза – от теории к практике. Атеросклероз и дислипидемии. 2013;1(10):4–19. [Arabidze G.G. Klinicheskaya immunologiya ateroskleroza – ot teorii k praktike. Ateroskleroz i dislipidemii. 2013:1(10)4–19. (In Russ.)].
- Minafra L., Bravatà V. Cell and molecular response to IORT treatment. Transl. Cancer. Res. 2014;3(1):32–47.
- Солнцева О.С., Калинина Н.М., Бычкова Н.М. Роль цитокинов в осуществлении апоптотических процессов клеток иммунной системы у лиц, подвергшихся воздействию ионизирующей радиации в малых дозах. Иммунология. 2000;3:22–24. [Solnceva OS, Kalinina NM, Bychkova NM. Rol’ citokinov v osushchestvlenii apoptoticheskih processov kletok immunnoj sistemy u lic, podvergshihsya vozdejstviyu ioniziruyushchej radiacii v malyh dozah. Immunologiya. 2000;3:22–24. (In Russ.)].
- Senyuk O.F., Kavsan V.M., Muller W.E. Long-term effects of low-dose irradiation on human health. Cell. Mol. Biol. 2002;48(4):393–409.
- Hayashi T., Kusunoki Y., Hakoda M. Radiation dose-dependent increases in inflammatory response markers in A-bomb survivors. Int. J. Radiat. Biol. 2003;79(2):129–136.
- Рыбкина В.Л., Азизова Т.В., Майнеке В. Влияние хронического облучения на некоторые показатели иммунитета. Иммунология. 2015;36(3):145–149. [Ry`bkina V.L., Azizova T.V., Majneke V. Vliyanie khronicheskogo oblucheniya na nekotory`e pokazateli immuniteta. Immunologiya. 2015;36(3)145–149. (In Russ.)].
- Rybkina V.L., Bannikova M.V., Adamova G.V. Immunological markers of chronic occupational radiation exposure. Health Phys. 2018;115(1):108–113. https://doi: 10.1097/HP.0000000000000855
- Rybkina V.L., Azizova T.V., Scherthan H. et al. Expression of blood serum proteins and lymphocyte differentiation clusters after chronic occupational exposure to ionizing radiation. Radiat. Environ.Biophyss. 2014;53(4):659–670. https://doi: 10.1007/s00411-014-0556-3
- Zar J.H. Biostatistical analysis. New Jersey: Prentice Hall, 1999.
- Little M.P., Tawn E.J., Tzoulaki I. et al. A systematic review of epidemiological associations between low and moderate doses of ionizing radiation and late cardiovascular effects, and their possible mechanisms. Radiat. Res. 2008;169(1)99–109. https://doi: 10.1667/RR1070.1
- Li K., Li W., Jia Y. et al. Long-term immune effects of high level natural radiation on Yangjiang inhabitants in China . Int. J. Radiat. Biol. 2019;95(6):764–770. https://doi: 10.1080/09553002.2019.1572250
- Aneva N., Zaharieva E., Katsarska O. et al. Inflammatory profile dysregulation in nuclear workers occupationally exposed to low-dose gamma radiation. J. Radiat. Res. 2019;60(6):768–79. https://doi: 10.1093/jrr/rrz059
- Lin J., Kakkar V., Lu X. Impact of MCP-1 in atherosclerosis. Curr. Pharm. Des. 2014;20(28): 4580–4588. https://doi: 10.2174/1381612820666140522115801
- Makarewicz-Wujec M., Henzel J., Kępka C. et al. Usefulness of MCP-1 Chemokine in the Monitoring of Patients with Coronary Artery Disease Subjected to Intensive Dietary Intervention: A Pilot Study. Nutrients. 2021;13(9):3047. https://doi: 10.3390/nu13093047
- Никитина В.В., Захарова Н.Б. Значение МСР-1 как предиктора сосудистых нарушений. Саратовский научно-медицинский журнал. 2010;6(4): 786–790. [Nikitina V.V., Zakharova N.B. Znachenie MSR-1 kak prediktora sosudisty`kh narushenij. Saratovskij nauchno-mediczinskij zhurnal. 2010;6(4):786–790. (In Russ.)].
- Суранова Г.Ж., Майназарова Э.С., Тухватшин Р.Р. Анализ уровней цитокинов у больных атеросклерозом периферических сосудов в условиях техногенного загрязнения. РМЖ. 2018;11(1):27-30. [Suranova G.Zh., Majnazarova E`.S., Tukhvatshin R.R. Analiz urovnej czitokinov u bol`ny`kh aterosklerozom perifericheskikh sosudov v usloviyakh tekhnogennogo zagryazneniya. RMZh. 2018;11(1)27–30. (In Russ.)].
- Georgakis M.K., de Lemos J.A., Ayers C. et al. Association of Circulating Monocyte Chemoattractant Protein-1 Levels With Cardiovascular Mortality: A Meta-analysis of Population-Based Studies. JAMA Cardiol. 2021;6(5):587–592. https://doi: 10.1001/jamacardio.2020.5392
- Viktorinova A. Potential clinical utility of macrophage colony-stimulating factor, monocyte chemotactic protein-1 and myeloperoxidase in predicting atherosclerotic plaque instability. Discov. Med. 2019;28(155):237–245.
- Воронина Л.П., Севостьянова И.В., Полунина Е.А., и др. Влияние табакокурения на состояние сосудистого эндотелия, выраженность оксидативного стресса и воспалительной активации у больных с сочетанием бронхиальной астмы и ишемической болезни сердца. Профилактическая медицина. 2020;23(1):100–106. [Voronina LP, Sevost’yanova IV, Polunina EA, et al. Effect jf smoking on the state of vascular endothelium, the severity of oxidative stress and inflammatory activation in patients with combination og brochial asthma and coronary heart disease. Profilakticheskaya Meditsina. 2020;23(1):100–106. (In Russ.)]. https://doi: 10/17116/profmed202023011100
- Танашян М.М., Раскуражев А.А., Кузнецова П.И., и др. Влияние фактора курения на показатели функции эндотелия у пациентов с цереброваскулярной патологией. Тромбоз, гемостаз и реология. 2022;3:82–89. [Tanashyan M.M., Raskurazhev A.A., Kuznecova P.I. et al. Vliyanie faktora kureniya na pokazateli funkcii endoteliya u pacientov s cerebrovaskulyarnoj patologiej. Tromboz, gemostaz i reologiya. 2022;3:82–89 (In Russ.)]. https://doi: 10.25555/THR.2022.3.1033
- Merrick A., Errington F., Milward K. Immunosuppresive effects of radiation on human dendritic cells: reduced Il-12 production on activation and impairment of T-cell priming. Br. J. Cancer. 2005;92(8):1450–1458. https://doi: 10.1038/sj.bjc.6602518
- Park H.R., Jo S.K. Lasting effects of an impairment of Th1-like immune response in gamma-irradiated mice: A resemblance between irradiated mice and aged mice. Cell. Immunol. 2011;267(1):1–8. https://doi: 10.1016/j.cellimm.2010.10.004
- Liu S., Wang C., Guo J. et al. Serum Cytokines Predict the Severity of Coronary Artery Disease Without Acute Myocardial Infarction. Front. Cardiovasc. Med. 2022;9:896810. https://doi: 10.3389/fcvm.2022.896810
- Chen T., Yang Y. Immunologic and inflammatory pathogenesis of chronic coronary syndromes: A review. Medicine (Baltimore). 2024;103(44):e40354. https://doi: 10.1097/MD.0000000000040354
- Ye J., Wang Y., Wang Z. et al. The Expression of IL-12 Family Members in Patients with Hypertension and Its Association with the Occurrence of Carotid Atherosclerosis. Mediators Inflamm. 2020;2020:2369279. https://doi: 10.1155/2020/2369279
- van der Heijden T., Bot I., Kuiper J. The IL-12 cytokine family in cardiovascular diseases. Cytokine. 2019;122:154188. https://doi: 10.1016/j.cyto.2017.10.010
Қосымша файлдар
