ANALYSIS OF THE INFLUENCE OF NATURAL AND ANTHROPOGENIC FACTORS ON RADON FLUX DENSITY IN MOSCOW USING MACHINE LEARNING METHODS
- Authors: Gavriliev S.G1, Petrova T.B2, Miklyaev P.S1, Karfidova E.A1
-
Affiliations:
- Sergeev Institute of Environmental Geoscience, Russian Academy of Sciences
- Lomonosov Moscow State University
- Issue: No 2 (2025)
- Pages: 81-92
- Section: RESEARCH METHODS AND TECHNIQUES
- URL: https://bakhtiniada.ru/0869-7809/article/view/307776
- DOI: https://doi.org/10.31857/S0869780925020085
- EDN: https://elibrary.ru/EPZKGU
- ID: 307776
Cite item
Abstract
About the authors
S. G Gavriliev
Sergeev Institute of Environmental Geoscience, Russian Academy of SciencesMoscow, 101000 Russia
T. B Petrova
Lomonosov Moscow State University
Email: tbp111@inbox.ru
Moscow, 119991 Russia
P. S Miklyaev
Sergeev Institute of Environmental Geoscience, Russian Academy of Sciences
Email: peterm7@inbox.ru
Moscow, 101000 Russia
E. A Karfidova
Sergeev Institute of Environmental Geoscience, Russian Academy of SciencesMoscow, 101000 Russia
References
- Макаров В.И., Дорожко А.Л., Макарова Н.В., Макеев В.М. Современные геодинамически активные зоны платформ // Геоэкология. Инженерная геология, гидрогеология, геокриология. 2007. № 2. С. 99-110.
- Макарова Н.В., Макеев В.И., Дорожко А.Л. и др. Геодинамические системы и геодинамически активные зоны Восточно-Европейской платформы // Бюл. Моск. обществава испытателей природы. Отд. геол. 2016. Т. 91. Вып. 4-5. С. 9-22.
- Маренный А.М., Цапалов А.А., Микляев П.С., Петрова Т.Б. Закономерности формирования радонового поля в геологической среде. М.: “Перо”, 2016. 394 с.
- Микляев П.С., Макаров В.И., Дорожко А.Л. и др. Радоновое поле Москвы // Геоэкология. Инженерная геология, гидрогеология, геокриология. 2013. № 2. С. 172187.
- Осипов В.И. Крупномасштабное геологическое картирование территории г. Москвы // Геоэкология. Инженерная геология, гидрогеология, геокриология. 2011. № 3. С. 195-197.
- Bossew P., Cinelli G., Ciotoli G.; Crowley Q.G. et al. Development of a Geogenic Radon Hazard Index - Concept, History, Experiences // Int. J. Environ. Res. Public Health. 2020. 17: 4134. https://doi.org/10.3390/ijerph17114134
- Di Carlo C., Maiorana A., Bochicchio F. Indoor Radon: Sources, Transport Mechanisms and Influencing Parameters. 2023.IntechOpen. https://doi.org/10.5772/intechopen.111710
- Friedman J.H. Multivariate adaptive regression splines (with discussion). The Annals of Statistics. 1991. 19:1-141.
- Gavriliev S., Petrova T., Miklyaev P. Factors influencing radon transport in the soils of Moscow // Environ Sci Pollut Res. 2022, no. 29, pp. 88606-88617. https://doi.org/10.1007/s11356-022-21919-y
- Gavriliev S., Petrova T., Miklyaev P., Karfidova, E. Predicting radon flux density from soil surface using machine learning and GIS data // Science of The Total Environment. 2023. 903:166348, https://doi.org/10.1016/j.scitotenv.2023.166348
- ICRP. Radiological protection against radon exposure. 2014. No. 126. https://www.icrp.org/publication.asp?id=ICRP%20Publication%20126
- Janik M., Bossew P., Kurihara O. Machine learning methods as a tool to analyse incomplete or irregularly sampled radon time series data // Science of The Total Environment. 2018. V. 630. P. 1155-1167.
- Mair J., Petermann E., Lehné R., Henk A. Can neotectonic faults influence soil air radon levels in the Upper Rhine Graben? An exploratory machine learning assessment // Science of The Total Environment. 2024. 956:177179. https://doi.org/10.1016/j.scitotenv.2024.177179
- Miklyaev P., Petrova T., Marennyy A, et al. High seasonal variations of the radon exhalation from soil surface in the fault zones (Baikal and North Caucasus regions) // Journal of Environmental Radioactivity, 2020. 219, 106271. https://doi.org/10.1016/j.jenvrad.2020.106271
- Miklyaev P.S., Petrova T.B., Shchitov D.V., Sidyakin P.A. et al. Radon transport in permeable geological environments // Sci. Total Environ. 2022. V. 852:158382. https://doi.org/10.1016/j.scitotenv.2022.158382.
- Nazaroff W.W. Radon transport from soil to air // Reviews of Geophysics. 1992. 30(2):137. https://doi.org/10.1029/92rg00055
- Osipov V.I., Burova V.N., Zaikanov V.G., Molodykh I.I. et al. A map of large-scale (detail) engineering geological zoning of Moscow territory // Water Resources. 2012. 39(7):737-746. https://doi.org/10.1134/S0097807812070093
- Petermann E., Bossew P., Kemski J. et al. Development of a high-resolution indoor radon map using a new machine learning- based probabilistic model and German radon survey data // Environ. Health Perspect. 2024.132 (9):97009. https://doi.org/10.1289/EHP14171
- Petermann E., Meyer H., Nussbaum M., Bossew P. Mapping the geogenic radon potential for Germany by Machine Learning. 2020. https://doi.org/10.5194/egusphere-egu2020-8501
- Rezaie F., Panahi M., Bateni S. M., Kim S. et al. Spatial modeling of geogenic indoor radon distribution in Chungcheongnamdo, South Korea using enhanced machine learning algorithms // Environment International. 2023. 171:107724. https://doi.org/10.1016/j.envint.2022.107724
- Timkova J., Fojtikova I., Pacherova P. Bagged neural network model for prediction of the mean indoor radon concentration in the municipalities in Czech Republic // Journal of Environmental Radioactivity. 2017. 166:398- 402. https://doi.org/10.1016/j.jenvrad.2016.07.008
- Torkar D., Zmazek B., Vaupotič J., Kobal I. Application of artificial neural networks in simulating radon levels in soil gas // Chemical Geology. 2010. 270(1-4):1-8. https://doi.org/10.1016/j.chemgeo.2009.09.017
- Tsapalov A., Kovler K., Miklyaev P. Open charcoal chamber method for mass measurements of radon exhalation rate from soil surface // Journal of Environmental Radioactivity. 2016. 160:28-35. https://doi.org/10.1016/j.jenvrad.2016.04.016
- UNSCEAR. Sources and effects of ionizing radiation. 2000. No. 1. https://www.unscear.org/unscear/en/publications/2000_1.html. Accessed 15 Apr 2022
- WHO Handbook on indoor radon. WHO Handbook on Indoor Radon: a public health perspective. Hajo Zeeb and Ferid Shannoun (eds), Geneva, WHO Press, 2009.
Supplementary files
