Electrochemical Formation of Polymer/Gold and Platinum Nanoparticle Nanocomposites

Cover Page

Cite item

Full Text

Abstract

The mechanism of electrochemical formation of a nanocomposite based on polymethylolacrylamide with inclusion of gold and platinum nanoparticles was studied using chronoamperometry and impedance spectroscopy. It was found that the process is complex and includes electrochemical (formation of radicals, synthesis of AuNPs and PtNPs nanoparticles, electrodeposition of a Zn sublayer) and chemical (initiation of polymerization and formation of a polymer layer, inclusion of nanoparticles into the polymer matrix) stages occurring simultaneously for 5–10 minutes. It was found that as a result of these processes, the electrode capacitance passes through a maximum, and the resistance increases, which is associated with both the deposition of a new crystalline phase on the cathode and the insulating effect of the polymer. The inclusion of metal nanoparticles in the film increases the electrical conductivity of the nanocomposite.

About the authors

L. G. Kolzunova

Institute of Chemistry, FEB RAS, Vladivostok, Russia

Email: kolzunova@ich.dvo.ru

E. V. Shchitovskaya

Institute of Chemistry, FEB RAS, Vladivostok, Russia; Far Eastern Federal University, Vladivostok, Russia

Email: evlad59@mail.ru

V. G. Emelyanova

Institute of Chemistry, FEB RAS, Vladivostok, Russia; Far Eastern Federal University, Vladivostok, Russia

Email: viktoriaemelanova4507@gmail.com

V. S. Egorkin

Institute of Chemistry, FEB RAS, Vladivostok, Russia

Email: egorkin@ich.dvo.ru

References

  1. Sahu S.K., Boggarapu V., Sreekanth P.S.R. Improvements in the mechanical and thermal characteristics of polymer matrix composites reinforced with various nanofillers: a brief review.Mater. Today.2024;113:1–8.
  2. Sahu S.K., Badgayan N.D., Samanta S., Sreekanth P.S.R. Quasistatic and dynamic nanomechanical properties of HDPE reinforced with 0/1/2 dimensional carbon nanofillers based hybrid nanocomposite using nanoindentation.Mater. Chem. Phys.2018;203:173–184.
  3. Badgayan N.D., Sahu S.K., Samanta S., Sreekanth P.S.R. An insight into mechanical properties of polymer nanocomposites reinforced with multidimensional filler system: a state of art review.Mater. Today. Proc.2020;24:422–431.
  4. Yang X., Li S., Yang Y., Huang X., Huang X., Li L., Yang W., Zhang Z., Shen G., Hou X., Cui Q., Chen A. Novel AuNPs/Fe–MOF based molecularly imprinted electrochemical sensors for detection of hydroxy-α-sanshool and hydroxy-(α+β)-sanshool in Zanthoxylumbungeanum Maxim and its processed products.Microchem. J.2025;209:112873.
  5. Al-Ghamdi Y.O., Saeed G., Ali M., Ali K. Polymers blended peanuts activated carbon composite hydrogels fabricated AgNPs as dip-catalyst for industrial dyes discoloration in aqueous medium.Ind. Crops Prod.2022;188:115588.
  6. Pattadakal S., Ghatti V., Chapi S., Vidya G., Kumarswamy Y.K., Raghu M.S., Vidyavathi G.T., Nandihalli N., Kasai D.R. Poly(vinyl alcohol) Nanocomposites Reinforced with CuO Nanoparticles Extracted by Ocimum sanctum: Evaluation of Wound-Healing Applications.Polymers.2025;17:400.
  7. Chumachenko V., Kutsevol N., Rawiso M., Schmutz M., Blanck C.In situformation of silver nanoparticles in linear and branched polyelectrolyte matrices using various reducing agents.Nanoscale Research Lett.2014;9:164.
  8. Tang E., Cheng G., Pang X., Ma X., Xing F. Synthesis of nano-ZnO/poly(methyl methacrylate) composite microsphere through emulsion polymerization and its UV-shielding property.Colloid Polym. Sci.2006;284(4):422–428.
  9. Alkayal N.S. Fabrication of Cross-Linked PMMA/SnO2Nanocomposites for Highly Efficient Removal of Chromium(III) from Wastewater.Polymers.2022;14(10):2101.
  10. Mourato A., Wong S.M., Siegenthaler H., Abrantes L.M. Polyaniline films containing palladium microparticles for electrocatalytic purposes.J. Solid State Electrochem.2006;10(3):140–147.
  11. Pei X., Liu J., Zhang Y., Huang Y., Li Z., Niu X., Zhang W., Sun W. Tetrahedral DNA-linked aptamer-antibody-based sandwich-type electrochemical sensor with Ag@Au core-shell nanoparticles as a signal amplifier for highly sensitive detection of α-fetoprotein.Microchim. Acta.2024;191:414.
  12. Shchitovskaya E.V., Karpenko M.A., Kolzunova L.G., Sarin S.A. Elektrohimicheskoe vklyuchenie chastic zolota v neprovodyashchuyu polimetilolakrilamidnuyu plenku.Vestnik of the FEB RAS.2017;(6):75–80. (In Russ.).
  13. Kolzunova L.G., Shchitovskaya E.V., Karpenko M.A., Rodzik I.G. Potenciostaticheskoe formirovanie kompozita polimer/nanochasticy serebra.Vestnik of the FEB RAS. 2020;(1):26–31. (In Russ.).
  14. Shchitovskaya E.V., Kolzunova L.G., Kuryavyj V.G., Slobodyuk A.B. Elektrohimicheskoe formirovanie i svojstva polimetilolakrilamidnoj plenki s vklyucheniem chastic platiny.Elektrohimiya.2015;51(12):1235–1246. (In Russ.).
  15. Kolzunova L.G., Runov A.K., Shchitovskaya E.V. Sposob polucheniya kompozitnogo materiala, obladayushchego fotokataliticheskimi svojstvami: Pat. 2690378 (Rossiya). 2019. (In Russ.).
  16. Kolzunova L.G., Shchitovskaya E.V. Single-Step Electrochemical Synthesis of Composite Polymethylolacrylamide/Ultrafine Polytetrafluoroethylene.Russ. J. Electrochem.2023;59(10):774–786.
  17. Karabiberoğlu Ş., Dursun Z. Au-Pt bimetallic nanoparticles anchored on conducting polymer: An effective electrocatalyst for direct electrooxidation of sodium borohydride in alkaline solution.Mater. Sci. Eng.: B.2023;288:116158.
  18. Han C., Li H., Zhao B., Chen M. Ultrasensitive electrochemical detection of miDNA-21 in human serum based on synergistic signal amplification by conducting polymers and bimetallic nanoparticles.Microchem. J.2024;207:111956.
  19. Sevcik J., Urbanek P., Skoda D., Jamatia T. Energy resolved-electrochemical impedance spectroscopy investigation of the role of Al-doped ZnO nanoparticles in electronic structure modification of polymer nanocomposite LEDs.Mater. Des.2021;205:109738.
  20. Hallemans N., Howey D., Battistel A., Saniee N.F. Electrochemical impedance spectroscopy beyond linearity and stationarity: a critical review.Electrochim. Acta.2023;466:142939.
  21. Ribeiro J.A., Jorge P. Applications of electrochemical impedance spectroscopy in disease diagnosis: a review.Sens. Actuators, B.2024;8:100205.
  22. Jimenez-Perez R., Agrisuelas J., Gomis-Berenguer A., Baeza-Romero M. One-pot electrodeposition of multilayered 3D PtNi/polymer nanocomposite. H2O2determination in aerosol phase.Electrochim. Acta.2023;461:142683.
  23. Wang X., Koirala S., Xu L., Li Q. Insights in emerging Ti3C2TxMXene-enriched polymeric coatings for metallic surface protection: Advancements in microstructure, anti-aging, and electrochemical performance.Prog. Org. Coat.2024;194:108606.
  24. Dai H., Zhang S., Wei J., Jiao T. A self-powered photoelectrochemical aptasensing platform for microcystin-LR cathodic detection via integrating Bi2S3CuInS2photocathode.Sens. Actuators, B. Chem.2023;397:134692.
  25. Barsoukov E., Macdonald J.R. Impedance spectroscopy: theory, experiment and application. Second edition. N. Y.: Wiley; 2005. 595 p.
  26. Grabovsky Y., Guynee J. A theory of inductive loops in electrochemical impedance spectroscopy. 2023. https://doi.org/10.48550/arXiv.2301.05024

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).