Acoustic anomalies in the boundary layers of the ocean
- Authors: Bulanov V.A1
-
Affiliations:
- VI. Il'ichev Pacific Oceanological Institute, FEB RAS
- Issue: No 2 (2025)
- Pages: 17-32
- Section: Earth and Environment Sciences
- URL: https://bakhtiniada.ru/0869-7698/article/view/307733
- DOI: https://doi.org/10.31857/S0869769825020021
- EDN: https://elibrary.ru/GFQKTG
- ID: 307733
Cite item
Full Text
Abstract
Boundary layers - the near-surface and bottom layers - play an important role in the structure of the ocean. The involvement of bubbles in the sea water column in surface waves leads to the appearance of bubble clouds, which can reach significant depths in strong winds. Bubbles may also be contained in the bottom layers in the areas of the outlet of underwater gas flares. They are often compared with the presence of gas hydrate deposits, or with the release of gases through cracks in the earth's crust near active volcanoes. The paper discusses methods and experimental results on the acoustics of boundary layers in the ocean containing a two-phase liquid with gas bubbles, as well as methods for their diagnosis. The possibilities of acoustic sounding for visualization of complex structure, dynamics and diagnostics of anomalies of physical properties of boundary layers are shown. Typical experimental results obtained in the Far Eastern seas are presented and discussed.
Keywords
About the authors
V. A Bulanov
VI. Il'ichev Pacific Oceanological Institute, FEB RAS
Author for correspondence.
Email: bulanov@poi.dvo.ru
Doctor of Sciences in Physics and Mathematics, Chief Researcher Vladivostok, Russia
References
- Бреховских Л.М., Лысанов Ю.П. Теоретические основы акустики океана. М.: Наука, 2007. 370 с.
- Hovem J.M. Marine Acoustics: The Physics of Sound in Underwater Environments. Newport Beach, CA, USA: Peninsula Publishing, 2012. 656 p.
- Thorpe S.A. The effect of Langmuir circulation on the distribution of submerged bubbles caused by breaking wind waves // J. Fluid Mech. 1984. Vol. 142. P. 151-170.
- Deane G.B. Sound generation and air entrainment by breaking waves in the surf zone // J. Acoust. Soc. Amer. 1997. Vol. 102. P. 2671-2689.
- Medwin H. Acoustical determination of bubble size spectra // J. Acoust. Soc. Am. 1977. Vol. 62. P. 1041-1044.
- Акуличев В.А., Буланов В.А., Кленин С.А. Акустическое зондирование газовых пузырьков в морской среде // Акуст. журн. 1986. Т. 32, № 3. С. 289-295.
- Garrett C., Li M., Farmer D. The Connection between Bubble Size Spectra and Energy Dissipation Rates in the Upper Ocean // J. Phys. Ocean. 2000. Vol. 30. P. 2163-2171.
- Thorpe S.A., Osborn T.R., Farmer D.M., Vagle S. Bubble Clouds and Langmuir Circulation // J. Phys. Oceanogr. 2003. Vol. 33, No. 9. P. 2013-2031.
- Baschek B., Farmer D.M. Gas Bubbles as Oceanographic Tracers // J. of Atmosph. and Oceanic Technol. 2010. Vol. 27. P. 241-245.
- Vagle S., McNeil C., Steiner N. Upper ocean bubble measurements from the NE Pacific and estimates of their role in air-sea gas transfer of the weakly soluble gases nitrogen and oxygen // J. Geophys. Res. 2010. Vol. 115. C12054. doi: 10.1029/2009JC005990.
- Deane G.B., Preisig J.C., Lavery A.C. The suspension of large bubbles near the seasurface by turbulence and their role in absorbing forward-scattered sound // IEEE Journ. of Oceanic Eng. 2013. Vol. 38, No. 4. P. 632-641. doi: 10.1109/JOE.2013.2257573.
- Ainslie M., Leighton T. Review of scattering and extinction cross-sections, damping factors, and resonance frequencies of a spherical gas bubble // J. Acoust. Soc. Am. 2011. Vol. 130. P. 3184-3208.
- Апресян Л.А. Об одном «парадоксе» в теории рассеяния // Журнал технической физики. 2023. Т. 93, Вып. 3. С. 332-338.
- Акуличев В.А., Буланов В.А. Акустические исследования мелкомасштабных неоднородностей в морской среде. Владивосток: ТОИ ДВО РАН, 2017. 414 С. URL: https://www.poi.dvo.ru/node/470 (дата обращения: 10.04.2024).
- Macaulay G.J., Chu D., Ona E. Field measurements of acoustic absorption in seawater from 38 to 360 kHz // J. Acoust. Soc. Am. 2020. Vol. 148. P. 100-107. doi: 10.1121/10.0001498.
- Ainslie M.A. Effect of wind-generated bubbles on fixed range acoustic attenuation in shallow water at 1-4 kHz // J. Acoust. Soc. Am. 2005. Vol. 118, No. 6. P. 3513-3523.
- Liu R., Li Z. The Effects of Bubble Scattering on Sound Propagation in Shallow Water // J. Mar. Sci. Eng. 2021. Vol. 9. 1441.
- Bulanov V.A., Bugaeva L.K., Storozhenko A.V. On sound scattering and acoustic properties of the upper layer of the sea with bubble clouds // J. Mar. Sci. Eng. 2022. Vol. 10. 872.
- Зоненшайн Л.П., Мурдмаа И.О., Варанов В.В., Кузнецов А.П., Кузин В.С., Кузьмин М.И., Авдейко Г.П., Стунжас П.А., Лукашин В.П., Бараш М.С., Валяшко Г.М., Демина Л.Л. Подводный газовый источник к западу от о-ва Парамушир // Океанология. 1987. Т. 27, № 5. С. 795-800.
- Leifer I., Judd A.G. Oceanic methane layers: the hydrocarbon seep bubble deposition hypothesis // Terra Nova. 2002. Vol. 14. P. 417-424.
- Обжиров А.И. История открытия газогидратов в Охотском море // Подводные исследования и робототехника. 2006. № 2. С. 72-80.
- Дмитриевский А.Н., Баланюк И.Е. Газогидраты морей и океанов. М.: ИРЦ Газпром, 2009. 416 с.
- Саломатин А.С., Юсупов В.И., Верещагина О.Ф., Черных Д.В. Акустическая оценка концентрации метана в водной толще в областях его пузырьковой разгрузки // Акуст. журн. 2014. Т. 60, № 6. С. 636-644
- Weidner E., Weber T.C., Mayer L., Jakobsson M., Chernykh D., Semiletov I. A wideband acoustic method for direct assessment of bubble-mediated methane flux // Cont. Shelf Res. 2019. Vol. 173. P. 104-115.
- Буланов В.А., Валитов М.Г., Корсков И.В., Шакиров Р.Б. о глубоководных акустических неоднородностях в придонных слоях в Охотском и Японском море // Подводные исследования и робототехника. 2022. № 3 (41). С. 67-78.
- Саломатин А.С., Юсупов В.И. Акустические исследования газовых «факелов» Охотского моря // Океанология. 2011. Т. 51, № 5. С. 911-919.
- Porter M.B., Reiss E.L. A numerical method for bottom interacting ocean acoustic normal modes // J. Acoust. Soc. Am. 1985. Vol. 77. P. 1760-1767. URL: http://oalib.hlsresearch.com/Modes/index.html (date of application: April 10, 2024).
Supplementary files
