Changes of the structure and permeability of lipid membranes caused by nanoparticles and pulsed electromagnetic effects
- Authors: Gulyaev Y.V.1, Cherepenin V.A.1, Taranov I.V.1, Vdovin V.A.1, Yaroslavov A.A.2, Kravtsov I.D.3, Grigoryan I.V.2,1, Koksharov Y.A.2, Khomutov G.B.2
-
Affiliations:
- Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences
- Lomonosov Moscow State University
- Fryazino Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of Sciences
- Issue: Vol 33, No 5 (2025)
- Pages: 709-730
- Section: Innovations in applied physics
- URL: https://bakhtiniada.ru/0869-6632/article/view/358018
- DOI: https://doi.org/10.18500/0869-6632-003184
- EDN: https://elibrary.ru/AIMACM
- ID: 358018
Cite item
Full Text
Abstract
About the authors
Yuri Vasilyevich Gulyaev
Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences
ORCID iD: 0000-0003-4401-9275
SPIN-code: 4551-7881
Scopus Author ID: 6506902303
ResearcherId: P-1511-2018
Mokhovaya 11-7, Moscow, 125009, Russia
Vladimir Alekseevich Cherepenin
Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences
ORCID iD: 0009-0004-2299-5552
SPIN-code: 3070-3020
Scopus Author ID: 7006376914
ResearcherId: AAO-6110-2021
Mokhovaya 11-7, Moscow, 125009, Russia
Igor Vladimirovich Taranov
Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences
ORCID iD: 0000-0002-3732-213X
SPIN-code: 3532-1812
Scopus Author ID: 6701721578
ResearcherId: P-1148-2018
Mokhovaya 11-7, Moscow, 125009, Russia
Vladimir Aleksandrovich Vdovin
Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences
ORCID iD: 0000-0002-2486-751X
Scopus Author ID: 7004583521
ResearcherId: F-9224-2017
Mokhovaya 11-7, Moscow, 125009, Russia
Alexander Anatolyevich Yaroslavov
Lomonosov Moscow State University
SPIN-code: 6894-4978
GSP-1, Leninskie Gory, Moscow, Russian Federation
Igor Dmitrievich Kravtsov
Fryazino Branch of Kotel`nikov Institute of Radiophysics and Electronics of Russian Academy of SciencesPl. Vvedenskogo 1, Zryazino, Moscow Region, 141190, Russia
Ilya Valentinovich Grigoryan
Lomonosov Moscow State University; Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences
ORCID iD: 0009-0001-0576-7599
GSP-1, Leninskie Gory, Moscow, Russian Federation
Yury Alexeevich Koksharov
Lomonosov Moscow State University
ORCID iD: 0000-0001-9266-0089
SPIN-code: 2020-0486
Scopus Author ID: 6701530332
ResearcherId: P9640-2015
GSP-1, Leninskie Gory, Moscow, Russian Federation
Gennadii Borisovich Khomutov
Lomonosov Moscow State University
ORCID iD: 0000-0002-7639-5171
SPIN-code: 9393-0967
Scopus Author ID: 07005741389
ResearcherId: I-3943-2012
GSP-1, Leninskie Gory, Moscow, Russian Federation
References
- Tewabe A., Abate A., Tamrie M., Seyfu A., Abdela Siraj E. Targeted drug delivery — from magic bullet to nanomedicine: Principles, challenges, and future perspectives // J. Multidiscip. Healthc. 2021. Vol. 14. P. 1711–1724. doi: 10.2147/JMDH.S313968.
- Vargason A. M., Anselmo A. C., Mitragotri S. The evolution of commercial drug delivery technologies // Nat. Biomed. Eng. 2021. Vol. 5, no. 9. P. 951–967. doi: 10.1038/s41551- 021-00698-w.
- Ezikea T. C., Okpalaa U. S., Lovet O. U., Nwikea C. P., Ezeakoa E. C., Okparaa O. J., Okoroafora C. C., Ezec S. C., Kaluc O. L., Odohd E. C., Nwadikea U. G., Ogbodoa J. O., Umehb B. U., Ossaia E. C., Nwanguma B. C. Advances in drug delivery systems, challenges and future directions // Heliyon. 2023. Vol. 9, no. 6. P. e17488. doi: 10.1016/j.heliyon.2023.e17488.
- Tiwari G., Tiwari R., Sriwastaw B., Bhati L., Pandey S., Pandey P., Bannerjee S. K. Drug delivery systems: An updated review // Int. J. Pharm. Investig. 2012. Vol. 2, iss. 1. P. 2–11. doi: 10.4103/2230-973X.96920.
- Bhagwat R. R., Vaidhya I. S. Novel drug delivery systems: an overview // Int. J. Pharm. Sci. Res. 2013. Vol. 4, no. 3. P. 970–982. doi: 10.13040/IJPSR.0975-8232.4(3).970-82.
- Muller-Goymann C. C. Physicochemical characterization of colloidal drug delivery systems such as reverse micelles, vesicles, liquid crystals and nanoparticles for topical administration // Eur. J. Pharm. Biopharm. 2004. Vol. 58, no. 2. P. 343–356. doi: 10.1016/j.ejpb.2004.03.028.
- Maximchik P. V., Tamarov K., Sheval E. V., Tolstik E., Kirchberger-Tolstik T., Yang, Z., Sivakov V., Zhivotovsky B., Osminkina L. A. Biodegradable porous silicon nanocontainers as an effective drug carrier for regulation of the tumor cell death pathways // ACS Biomater. Sci. Eng. 2019. Vol. 5, no. 11. P. 6063–6071. doi: 10.1021/acsbiomaterials.9b01292.
- Khurana S., Jain N. K., Bedi P. M. S. Development and characterization of a novel controlled release drug delivery system based on nanostructured lipid carriers gel for meloxicam // Life Sci. 2013. Vol. 93, no. 21. P. 763–772. doi: 10.1016/j.lfs.2013.09.027.
- Xiong W., Li L., Wang Y., Yu Y., Wang S., Gao Y., Liang Y., Zhang G., Pan W., Yang X. Design and evaluation of a novel potential carrier for a hydrophilic antitumor drug: Auricularia auricular polysaccharide-chitosan nanoparticles as a delivery system for doxorubicin hydrochloride // Int. J. Pharm. 2016. Vol. 511, no. 1. P. 267–275. doi: 10.1016/j.ijpharm.2016.07.026.
- Sessa G., Weissmann G. Phospholipid spherules (liposomes) as a model for biological membranes // J. Lipid Res. 1968. Vol. 9, no. 3. P. 310–318. doi: 10.1016/S0022-2275(20)43097-4.
- Lasic D. D. Liposomes: From Physics to Applications. Amsterdam: Elsevier, 1993. 580 p.
- Torchilin V., Weissig V.(eds.) Liposomes: A Practical Approach. Oxford: Oxford University Press, 2003. 396 p.
- Schwendener R. A. Liposomes in biology and medicine // In: Chan W. C. W. (ed) Bio-Applications of Nanoparticles. Advances in Experimental Medicine and Biology. Vol. 620. NY: Springer, 2007. P. 117–128. doi: 10.1007/978-0-387-76713-0_9.
- Liu P., Chen G., Zhang J. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives // Molecules. 2022. Vol. 27, no. 4. P. 1372. doi: 10.3390/molecules27041372.
- Кокшаров Ю. A., Губин С. П., Таранов И. В., Хомутов Г. Б., Гуляев Ю. В. Магнитные наночастицы в медицине: успехи, проблемы, достижения // Радиотехника и электроника. 2022. Т. 67, № 2. С. 99–116. doi: 10.31857/S0033849422020073.
- Veiseh O., Gunn J. W., Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging // Adv. Drug. Deliv. Rev. 2010. Vol. 62, no. 3. P. 284–304. DOI: 10.1016/ j.addr.2009.11.002.
- Neuberger T., Schopf B., Hofmann H., Hofmann M., Von Rechenberg B. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system // J. Magn. Magn. Mater. 2005. Vol. 293, no. 1. P. 483–496. doi: 10.1016/j.jmmm. 2005.01.064.
- Nasongkla N., Bey E., Ren J., Ai H., Khemtong C., Guthi J. S., Chin S.-F., Sherry A. D., Boothman D. A., Gao J. Multifunctional polymeric micelles as cancer-targeted. Nano Lett. 2006;6(11):2427–2430. doi: 10.1021/nl061412u.
- Berezin M. Y. (Ed.) Nanotechnology for Biomedical Imaging and Diagnostics: From Nanoparticle Design to Clinical Applications. New York: Wiley, 2015. 520 p. doi: 10.1002/9781118873151.
- Губин С. П., Кокшаров Ю. А., Хомутов Г. Б., Юрков Г. Ю. Магнитные наночастицы: методы получения, строение и свойства // Усп. хим. 2005. Т. 74, № 6. P. 539–574. DOI: 10.1070/ RC2005v074n06ABEH000897.
- Amstad E., Textor M., Reimhult E. Stabilization and functionalization of iron oxide nanoparticles for biomedical applications // Nanoscale. 2011. Vol. 3, no. 7. P. 2819–2843. DOI: 10.1039/ C1NR10173K.
- Gupta A. K., Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications // Biomaterials. 2005. Vol. 26, no. 18. P. 3995–4021. doi: 10.1016/j.biomaterials. 2004.10.012.
- Berry C. C., Curtis A. S. Functionalisation of magnetic nanoparticles for applications in biomedicine // J. Phys. D: Appl. Phys. 2005. Vol. 36, no. 13. P. R198–R206. DOI: 10.1088/ 0022-3727/36/13/203.
- Akbarzadeh A., Samiei M., Davaran S. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine // Nanoscale Res. Lett. 2012. Vol. 7. P. 144. doi: 10.1186/1556- 276X-7-144.
- Huang Y., Hsu J. C., Koo H., Cormode D. P. Repurposing ferumoxytol: Diagnostic and therapeutic applications of an FDA-approved nanoparticle // Theranostics. 2022. Vol. 12, no. 2. P. 796–816. doi: 10.7150/thno.67375.
- Amstad E., Kohlbrecher J., Muller E., Schweizer T., Textor M., Reimhult E. Triggered release from liposomes through magnetic actuation of iron oxide nanoparticle containing membranes // Nano Lett. 2011. Vol. 11, no. 4. P. 1664–1670. doi: 10.1021/nl2001499.
- Vlasova K. Y., Piroyan A., Le-Deygen I. M., Vishwasrao H. M., Ramsey J. D., Klyachko N. L., Golovin Y. I., Rudakovskaya P. G., Kireev I. I., Kabanov A. V., Sokolsky-Papkov M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications Magnetic liposome design for drug release systems responsive to super-low frequency alternating current magnetic field (AC MF) // J. Colloid Interface Sci. 2019. Vol. 552. P. 689–700. doi: 10.1016/j.jcis.2019.05.071.
- Khomutov G. B., Kim V. P., Koksharov Yu. A., Potapenkov K. V., Parshintsev A. A., Soldatov E. S., Usmanov N. N., Saletsky A. M., Sybachin A. V., Yaroslavov A. A., Taranov I. V., Cherepenin V. A., Gulyaev Y.V. Nanocomposite biomimetic vesicles based on interfacial complexes of polyelectrolytes and colloid magnetic nanoparticles // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2017. Vol. 532. P. 26–35. doi: 10.1016/j.colsurfa.2017.07.035.
- Nguyen T. T. Gold nanoparticles for targeting of biomedical applications: A review // Asian Journal of Chemistry. 2024. Vol. 36, no. 8. P. 1741–1746. doi: 10.14233/ajchem.2024.31729.
- Dreaden E. C., Alkilany A. M., Huang X., Murphy C. J., El-Sayed M. A. The golden age: gold nanoparticles for biomedicine // Chem. Soc. Rev. 2012. Vol. 41, no. 7. P. 2740–2779. DOI: 10.1039/ C1CS15237H.
- Kumalasari M. R., Alfanaa R., Andreani A. S. Gold nanoparticles (AuNPs): A versatile material for biosensor application // Talanta Open. 2024. Vol. 9. P. 100327. doi: 10.1016/j.talo.2024.100327.
- Ferrari E. Gold nanoparticle-based plasmonic biosensors // Biosensors. 2023. Vol. 13, no. 3. P. 411. doi: 10.3390/bios13030411.
- Goddard Z. R., Beekman A. M., Cominetti M. M. D., O’Connell M. A., Chambrier I., Cook M. J., Marn M. J., Russell D. A., Searcey M. Peptide directed phthalocyanine–gold nanoparticles for selective photodynamic therapy of EGFR overexpressing cancers // RSC Med. Chem. 2021. Vol. 12, no. 2. P. 288–292. doi: 10.1039/D0MD00284D.
- Kolesnikova T. A., Gorin D. A., Fernandes P., Kessel S., Khomutov G. B., Fery A., Shchukin D. G., Mohwald H. Nanocomposite microcontainers with high ultrasound sensitivity // Adv. Funct. Mater. 2010. Vol. 20, no. 7. P. 1189–1195. doi: 10.1002/adfm.200902233.
- Novoselova M. V., German S. V., Abakumova T. O., Perevoschikov S. V., Sergeeva O. V., Nesterchuk M. V., Efimova O. I., Petrov K. S., Chernyshev V. S., Zatsepin T. S., Gorin D. A. Multifunctional nanostructured drug delivery carriers for cancer therapy: Multimodal imaging and ultrasoundinduced drug release // Colloids Surf B Biointerfaces. 2021. Vol. 200. P. 111576. DOI: 10.1016/ j.colsurfb.2021.111576.
- De Vry J., Martnez-Martnez P., Losen M., Temel Y., Steckler T., Steinbusch H. W., De Baets M. H., Prickaerts J. In vivo electroporation of the central nervous system: a non-viral approach for targeted gene delivery // Prog. Neurobiol. 2010. Vol. 92, no. 3. P. 227–244. DOI: 10.1016/ j.pneurobio.2010.10.001.
- Zhang N., Li Z., Han X., Zhu Z., Li Z., Zhao Y., Liu Z., Lv Y. Irreversible electroporation: An emerging immunomodulatory therapy on solid tumors // Front. Immunol. 2022. Vol. 12. P. 811726. doi: 10.3389/fimmu.2021.811726.
- Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media // IEEE Transactions on Magnetics. 1981. Vol. 17, no. 2. P. 1247–1248. doi: 10.1109/TMAG.1981.1061188.
- Гуляев Ю. В., Черепенин В. A., Таранов И. В., Вдовин В. A., Хомутов Г. Б. Воздействие ультракоротких электрических импульсов на нанокомпозитные липосомы в водной среде // Радиотехника и электроника. 2020. T. 65, № 2. C. 189–196. doi: 10.31857/S0033849420020096.
- Гуляев Ю. В., Черепенин В. A., Вдовин В. A., Таранов И. В., Ярославов A. A., Ким В. П., Хомутов Г. Б. Дистанционная декапсуляция нанокомпозитных липосом, содержащих внедренные проводящие наночастицы, при воздействии импульсного электрического поля // Радиотехника и электроника. 2015. Т. 60, № 10. С. 1051–1063. doi: 10.7868/S0033849415100034.
- Гуляев Ю. В., Черепенин В. A., Таранов И. В., Вдовин В. A., Хомутов Г. Б. Активация нанокомпозитных липосомальных капсул в проводящей водной среде ультракоротким электрическим воздействием // Радиотехника и электроника. 2021. Т. 66, № 1. С. 82–90. doi: 10.31857/S0033849421010022.
- Ландау Л. Д., Лифшиц Е. М. Теоретическая физика. Т. 8. Электродинамика сплошных сред. М.: Физматлит, 2005. 656 с.
- Schwan H. P. Biophysics of the interaction of electromagnetic energy with cells and membranes // In: Grandolfo M., Michaelson S. M., Rindi A. (eds) Biological Effects and Dosimetry of Nonionizing Radiation. NATO Advanced Study Institutes Series. Vol. 49. Boston: Springer, 1983. P. 213–231. doi: 10.1007/978-1-4684-4253-3_9.
- Овчинников Ю. A. Биоорганическая химия. M.: Просвещение, 1987. 815 с.
- Ким В. П., Ермаков А. В., Глуховской Е. Г., Рахнянская А. А., Гуляев Ю. В., Черепенин В. А., Таранов И. В., Кормакова П. А., Потапенков К. В., Усманов Н. Н., Салецкий А. М., Кокшаров Ю. А., Хомутов Г. Б. Планарные наносистемы на основе комплексов амфифильного полиамина, наночастиц магнетита и молекул ДНК // Российские нанотехнологии. 2014. Т. 9, № 5–6. С. 47–52.
- Гуляев Ю. В., Черепенин В. А., Таранов И. В., Вдовин В. A., Ярославов A. A., Ким В. П., Хомутов Г. Б. Дистанционная декапсуляция нанокомпозитных липосомальных капсул, содержащих золотые наностержни, ультракороткими электрическими импульсами // Радиотехника и электроника. 2016. Т. 61, № 1. С. 61–65. doi: 10.7868/S0033849415120104.
- Chede L. S., Wagner B. A., Buettner G. R., Donovan M. D. Electron spin resonance evaluation of buccal membrane fluidity alterations by sodium caprylate and L-menthol // Int. J. Mol. Sci. 2021. Vol. 22, no. 19. P. 10708. doi: 10.3390/ijms221910708.
Supplementary files


