Memristor-based Chaotic Dynamical Model for Generating Electrocardiogram Signal

Cover Page

Cite item

Full Text

Abstract

The purpose of this study is to create a phenomenological model of the human electrocardiogram based on the McSharry model and to achieve a plausible distribution of interpeak intervals between individual heartbeats. Methods. This paper presents an advanced approach to synthetic ECG generation using a modified McSharry model. We used chaotic dynamics instead of conventional pseudorandom number generators to better represent the variability in ECG dynamical parameters, such as interpeak intervals. A fourth-order circuit equation with a memristor is introduced as a chaos generator. By adjusting the parameters of this system, one can varythe range of peak parameters in the synthetic ECG. The proposed ECG generator can be implemented as a  computer model or as an analog circuit, depending on the application requirements. Results. The experimental investigation of generated synthetic signals with time-domain waveforms, phase portraits, and RR tachograms’ analysis demonstrated a good correspondence between the synthetic and real ECGs. It is shown that the modified ECG generation approach provides a reasonably realistic and robust method for simulating synthetic ECG signals. Conclusion. The reported solution possesses many possible applications such as the calibration of medical cardiographs, medical education, and machine learning models for ECG analysis.  

About the authors

Ekaterina Evgenieva Kopets

Sankt-Peterburg Electrotechnical University "LETI"

Email: sysoevamv@sgu.ru
ORCID iD: 0000-0002-5953-255X
SPIN-code: 9753-8266
Scopus Author ID: 57200196143
ResearcherId: AAQ-7740-2021
ul. Prof. Popova 5, Sankt-Peterburg, 197376, Russia

Vyacheslav Gennadevich Rybin

Sankt-Peterburg Electrotechnical University "LETI"

Email: sysoevamv@sgu.ru
ORCID iD: 0000-0002-6515-0224
SPIN-code: 5282-5287
Scopus Author ID: 57195325268
ResearcherId: AAG-2804-2019
ul. Prof. Popova 5, Sankt-Peterburg, 197376, Russia

Oleg Vadimovich Vasilchenko

Sankt-Peterburg Electrotechnical University "LETI"

Email: sysoevamv@sgu.ru
ORCID iD: 0009-0008-8295-2107
ul. Prof. Popova 5, Sankt-Peterburg, 197376, Russia

Karina Alexandrovna Kurtova

Sankt-Peterburg Electrotechnical University "LETI"

Email: sysoevamv@sgu.ru
ORCID iD: 0009-0001-6680-5763
ul. Prof. Popova 5, Sankt-Peterburg, 197376, Russia

Timur Iskandarovich Karimov

Sankt-Peterburg Electrotechnical University "LETI"

Email: sysoevamv@sgu.ru
ORCID iD: 0000-0002-9860-8211
Scopus Author ID: 56703060800
ResearcherId: F-2877-2017
ul. Prof. Popova 5, Sankt-Peterburg, 197376, Russia

Artur Iskandarovich Karimov

Sankt-Peterburg Electrotechnical University "LETI"

Email: sysoevamv@sgu.ru
ORCID iD: 0000-0002-2591-0962
SPIN-code: 8393-0250
ul. Prof. Popova 5, Sankt-Peterburg, 197376, Russia

Denis Nikolaevich Butusov

Sankt-Peterburg Electrotechnical University "LETI"

Author for correspondence.
Email: sysoevamv@sgu.ru
ORCID iD: 0000-0002-8941-4220
SPIN-code: 7136-1060
Scopus Author ID: 58550083900
ResearcherId: E-6759-2017
ul. Prof. Popova 5, Sankt-Peterburg, 197376, Russia

References

  1. Kopets E, Shpilevaya T, Vasilchenko O, Karimov A, Butusov D. Generating synthetic sperm whale voice data using StyleGAN2-ADA. Big Data Cogn. Comput. 2024;8(4):40. DOI: 10.3390/ bdcc8040040.
  2. Karimov A, Kopets E, Karimov T, Almjasheva O, Arlyapov V, Butusov D. Empirically developed model of the stirring-controlled Belousov–Zhabotinsky reaction. Chaos, Solitons & Fractals. 2023;176:114149. doi: 10.1016/j.chaos.2023.114149.
  3. Ware WA, Bonagura JD, Scansen BA. Electrocardiography. In: Cardiovascular Disease in Companion Animals. Boca Raton: CRC Press; 2021. P. 135–166.
  4. Vafaie MH, Ataei M, Koofigar HR. Heart diseases prediction based on ECG signals’ classification using a genetic-fuzzy system and dynamical model of ECG signals. Biomed. Signal Process. Control. 2014;14:291–296. doi: 10.1016/j.bspc.2014.08.010.
  5. Golany T, Radinsky K, Freedman D. SimGANs: Simulator-based generative adversarial networks for ECG synthesis to improve deep ECG classification. In: Proceedings of the 37th International Conference on Machine Learning. 2020, Vienna, Austria. P. 3597–3606.
  6. Sameni R, Shamsollahi MB, Jutten Ch, Babaie-Zade M. Filtering noisy ECG signals using the extended Kalman filter based on a modified dynamic ECG model. In: Computers in Cardiology. 2005, Lyon, France. IEEE; 2005. P. 1017–1020. doi: 10.1109/CIC.2005.1588283.
  7. Das S, Gupta R, Mitra M. Development of an analog ECG simulator using standalone embedded system. International Journal of Electrical, Electronics and Computer Engineering. 2012;1(2): 83–87.
  8. Sahin M, Karakaya EB, Guler H, G ulten A, Hamamc SE. Memristor Based Filter Design and Implementation for ECG Signal. Bitlis Eren Universitesi Fen Bilimleri Dergisi. 2020;9(2):756–765. doi: 10.17798/bitlisfen.582480.
  9. McSharry PE, Clifford GD, Tarassenko L, Smith LA. A dynamical model for generating synthetic electrocardiogram signals. IEEE Trans. Biomed. Eng. 2003;50(3):289–294. doi: 10.1109/TBME. 2003.808805.
  10. McSharry PE, Clifford G, Tarassenko L, Smith LA. Method for generating an artificial RR tachogram of a typical healthy human over 24-hours. In: Computers in Cardiology. 2002, Memphis, TN, USA. IEEE; 2002. P. 225–228. doi: 10.1109/CIC.2002.1166748.
  11. Van der Pol B, van der Mark J. LXXII. The heartbeat considered as a relaxation oscillation, and an electrical model of the heart. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1928;6(38):763–775. doi: 10.1080/14786441108564652.
  12. Ryzhii E, Ryzhii M. A heterogeneous coupled oscillator model for simulation of ECG signals. Comput. Methods Programs Biomed. 2014;117(1):40–49. doi: 10.1016/j.cmpb.2014.04.009.
  13. Gois SR, Savi MA. An analysis of heart rhythm dynamics using a three-coupled oscillator model. Chaos, Solitons & Fractals. 2009;41(5):2553–2565. doi: 10.1016/j.chaos.2008.09.040.
  14. Albert DE. Chaos and the ECG: fact and fiction. J. Electrocardiol. 1991;24:102–106. DOI: 10.1016/ s0022-0736(10)80026-3.
  15. Qu Zh. Chaos in the genesis and maintenance of cardiac arrhythmias. Prog. Biophys. Mol. Biol. 2011;105(3):247–257. doi: 10.1016/j.pbiomolbio.2010.11.001.
  16. Suth D, Luther S, Lilienkamp Th. Chaos control in cardiac dynamics: terminating chaotic states with local minima pacing. Front. Netw. Physiol. 2024;4:1401661. doi: 10.3389/fnetp.2024.1401661.
  17. Shey JT, Lin KP, Chang WH. Measurement 12-lead ECG character points using line segment clustering technique. In: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol. 20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No. 98CH36286). IEEE; 1998. P. 223–226.
  18. Kicmerova D. Modelling of arrhythmics ECG signals with McSharrys model. In: 17th International Conference Radioelektronika. 2007, Brno, Czech Republic. IEEE; 2007. P. 1–5. DOI: 10.1109/ RADIOELEK.2007.371473.
  19. Dolinsky P, Andr ` as I, Michaeli L, Grimaldi D. Model for generating simple synthetic ECG signals. Acta Electrotechnica et Informatica. 2018;18(3):3–8. doi: 10.15546/aeei-2018-0019.
  20. Adib E, Fernandez AS, Afghah F, Prevost JJ. Synthetic ecg signal generation using probabilistic diffusion models. IEEE Access. 2023;11:75818–75828. doi: 10.1109/access.2023.3296542.
  21. Piacentino E, Guarner A, Angulo C. Generating synthetic ecgs using gans for anonymizing healthcare data. Electronics. 2021;10(4):389. doi: 10.3390/electronics10040389.
  22. Xia Y, Wang W, Wang K. ECG signal generation based on conditional generative models. Biomed. Signal Process. Control. 2023;82:104587. doi: 10.1016/j.bspc.2023.104587.
  23. Swain S, Patra D. Efficient dynamic modelling of ECG with myocardial infarction using interacting multiple model and particle filter. IET Signal Processing. 2020;14(8):495–505. doi: 10.1049/ietspr.2019.0458.
  24. Mishra A, Bhusnur S, Mishra Santosh. Advancing Health Sciences and Biomedical Technology: A Parametric based ECG Modelling. Everyman’s Science. 2024;57(2). doi: 10.59094/emsj.v57i2.85.
  25. Vo Kh, Naeini EK, Naderi A, Jilani D, Rahmani AM, Dutt N, Cao H. P2E-WGAN: ECG waveform synthesis from PPG with conditional wasserstein generative adversarial networks. In: Proceedings of the 36th Annual ACM Symposium on Applied Computing. 2021. P. 1030–1036. doi: 10.1145/3412841.3441979.
  26. Yuan X, Wang W, Li X, Zhang Yu, Hu X, Deen MJ. CATransformer: A Cycle-Aware Transformer for High-Fidelity ECG Generation From PPG. IEEE J. Biomed. Health Inform. 2024. DOI: 10.1109/ JBHI.2024.3482853.
  27. Kuznetsov V, Moskalenko V, Gribanov D, Zolotykh N. Interpretable feature generation in ECG using a variational autoencoder. Front. Genet. 2021;12:638191. doi: 10.3389/fgene.2021.638191.
  28. Ostrovskii V, Fedoseev P, Bobrova Yu, Butusov D. Structural and parametric identification of Knowm memristors. Nanomaterials. 2021;12(1):63. doi: 10.3390/nano12010063.
  29. Sahin ME, Cam Taskiran ZG, Guler H, Hamamci SE. Application and modeling of a novel 4D memristive chaotic system for communication systems. Circuits Syst. Signal Process. 2020;39: 3320–3349. doi: 10.1007/s00034-019-01332-6.
  30. Alimisis V, Gourdouparis M, Gennis G, Dimas Ch, Sotiriadis PP. Analog gaussian function circuit: Architectures, operating principles and applications. Electronics. 2021;10(20):2530. doi: 10.3390/electronics10202530.
  31. Huang F, Qin T, Wang L, Wan H. Hybrid prediction method for ECG signals based on VMD, PSR, and RBF neural network. BioMed Res. Int. 2021;2021(1):6624298. doi: 10.1155/2021/6624298.
  32. Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE, Moody GB, Peng Ch-K, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation. 2000;101(23):e215–e220. doi: 10.1161/01.cir.101.23.e215.
  33. Lugovaya TS. Biometric Human Identification Based on Electrocardiogram. Master’s Thesis. St.Petersburg: Electrotechnical University ‘LETI’; 2005.
  34. Rybin V, Butusov D, Shirnin K, Ostrovskii V. Revealing hidden features of chaotic systems using high-performance bifurcation analysis tools based on CUDA technology. Int. J. Bifurc. Chaos. 2024;34(11):2450134. doi: 10.1142/s0218127424501347.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».