Influence of the topology of coupled antiferromagnetic oscillators on their mutual synchronization
- Authors: Samoylenko K.D.1,2, Mitrofanova A.Y.1,2,3, Safin A.R.1, Nikitov S.A.1
-
Affiliations:
- Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences
- Moscow Institute of Physics and Technology
- Bauman Moscow State Technical University (BMSTU, Bauman MSTU)
- Issue: Vol 33, No 3 (2025)
- Pages: 307-321
- Section: Applied problems of nonlinear oscillation and wave theory
- URL: https://bakhtiniada.ru/0869-6632/article/view/357994
- DOI: https://doi.org/10.18500/0869-6632-003154
- EDN: https://elibrary.ru/JVIJVU
- ID: 357994
Cite item
Full Text
Abstract
About the authors
Kristina Dmitrievna Samoylenko
Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences; Moscow Institute of Physics and Technology
ORCID iD: 0009-0008-9943-4103
SPIN-code: 2667-4031
Mokhovaya 11-7, Moscow, 125009, Russia
Anastasia Yur'evna Mitrofanova
Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences; Moscow Institute of Physics and Technology; Bauman Moscow State Technical University (BMSTU, Bauman MSTU)
ORCID iD: 0000-0003-4662-9632
SPIN-code: 8931-2251
Mokhovaya 11-7, Moscow, 125009, Russia
Ansar Rizaevich Safin
Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences
ORCID iD: 0000-0001-6507-6573
Scopus Author ID: 36523944600
ResearcherId: B-1228-2014
Mokhovaya 11-7, Moscow, 125009, Russia
Sergej Apollonovich Nikitov
Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences
ORCID iD: 0000-0002-2413-7218
ResearcherId: Р-8206-2014
Mokhovaya 11-7, Moscow, 125009, Russia
References
- Kim S. K., Beach G. S., Lee K. J., Ono T., Rasing T., Yang H. Ferrimagnetic spintronics // Nat. Mater. 2022. Vol. 21, iss. 1. P. 24–34. doi: 10.1038/s41563-021-01139-4.
- Kim K. W., Park B. G., Lee K. J. Spin current and spin-orbit torque induced by ferromag-nets // npj Spintronics. 2024. Vol. 2, iss. 1. P. 8. doi: 10.1038/s44306-024-00010-x.
- Gomonay O., Baltz V., Brataas A., Tserkovnyak Y. Antiferromagnetic spin textures and dynamics // Nature Phys. 2018. Vol. 14, iss. 3. P. 213—216. doi: 10.1038/s41567-018-0049-4.
- Han J., Cheng R., Liu L., Ohno H., Fukami S. Coherent antiferromagnetic spintronics // Nat Mater. 2023. Vol. 22, iss. 6. P. 684–695. doi: 10.1038/s41563-023-01492-6.
- Иванов Б. А. Спиновая динамика антиферромагнетиков и сверхбыстрая спинтроника // ЖЭТФ. 2020. Т. 158, № 1(7). С. 103–123. doi: 10.31857/S004445102007010X.
- Zhang W., Jungfleisch M. B., Jiang W., Pearson J. E., Hoffmann A., Freimuth F., Mokrousov Y. Spin Hall effects in metallic antiferromagnets // Phys. Rev. Lett. 2014. Vol. 113, iss. 19. P. 196602. doi: 10.1103/PhysRevLett.113.196602.
- Puliafito V., Khymyn R., Carpentieri M., Azzerboni B., Tiberkevich V., Slavin A., Finocchio G. Micromagnetic modeling of terahertz oscilla-tions in an antiferromagnetic material driven by the spin Hall effect // Phys. Rev. B. 2019. Vol. 99, iss. 2. P. 024405. doi: 10.1103/PhysRevB.99.024405.
- Cheng R., Xiao D., Brataas A. Terahertz antiferromagnetic spin Hall nano-oscillator // Phys. Rev. Lett. 2016. Vol. 116, iss. 20. P. 207603. doi: 10.1103/PhysRevLett.116.207603.
- Safin A., Puliafito V., Carpentieri M., Finocchio G., Nikitov S., Stremoukhov P., Kirilyuk A. I., Tyberkevych V., Slavin A. N. Electrically tunable detector of THz-frequency signals based on an antiferromagnet // Appl. Phys. Lett. 2020. Vol. 117, iss. 22. P. 222411. doi: 10.1063/5.0031053.
- Sulymenko O., Prokopenko O., Lisenkov I., Akerman J., Tyberkevych V., Slavin A. N., Khymyn R. Ultra-fast logic devices using artificial “neurons” based on antiferromagnetic pulse generators // J. Appl. Phys. 2018. Vol. 124, iss. 15. P. 152115. doi: 10.1063/1.5042348.
- Mitrofanova A. Yu., Safin A. R, Kravchenko O. V. Neuromorphic computing based on an antiferromagnet-heavy metal hybrid structure under the action of laser pulses // J. Phys.: Conf. Ser. 2021. Vol. 2127, iss. 1. P. 012023. doi: 10.1088/1742-6596/2127/1/012023.
- Tsunegi S., Taniguchi T., Lebrun R., Yakushiji K., Cros V., Grollier J., Fukushima A., Yuasa S., Kubota H. Scaling up electrically synchronized spin torque oscillator networks // Sci. Rep. 2018. Vol. 8, iss. 1. P. 13475. doi: 10.1038/s41598-018-31769-9.
- Dieny B., Prejbeanu I. L., Garello K., Gambardella P., Freitas P., Lehndorff R., Raberg W., Ebels U., Demokritov S. O., Akerman J., Deac A., Pirro P., Adelmann C., Anane A., Chumak A. V., Hirohata A., Mangin S., Valenzuela S. O., Onbasl M. C., d’Aquino M., Prenat G., Finocchio G., Lopez-Diaz L., Chantrell R., Chubykalo-Fesenko O., Bortolotti P. Opportunities and challenges for spintronics in the microelectronics industry // Nat. Electron. 2020. Vol. 3, iss. 8. P. 446–459. doi: 10.1038/s41928-020-0461-5.
- Sulymenko O. R., Prokopenko O. V., Tiberkevich V. S., Slavin A. N., Ivanov B. A., Khymyn R. S. Terahertz-frequency spin Hall auto-oscillator based on a canted antiferromagnet // Phys. Rev. Applied. 2017. Vol. 8, iss. 6. P. 064007. doi: 10.1103/PhysRevApplied.8.064007.
- Khymyn R., Lisenkov I., Tiberkevich V., Ivanov B. A, Slavin A. Antiferromagnetic THz-frequency Josephson-like oscillator driven by spin current // Sci. Rep. 2017. Vol. 7, iss. 1. P. 43705. doi: 10.1038/srep43705.
- Dyakonov M. Magnetoresistance due to edge spin accumulation // Phys. Rev. Lett. 2007. Vol. 99, iss. 12. P. 126601. doi: 10.1103/PhysRevLett.99.126601.
- Hoffmann A. Spin Hall effects in metals // IEEE Trans. Magnetics. 2013. Vol. 49, iss. 10. P. 5172–5193. doi: 10.1109/TMAG.2013.2262947.
- Taniguchi T. Magnetoresistance originated from charge-spin conversion in ferromagnet // AIP Advances. 2018. Vol. 8, iss. 5. P. 055916. doi: 10.1063/1.5003397.
- Сафин А. Р., Никитов С. А. Нелинейная динамика антиферромагнитного спинтронного осциллятора // Известия вузов. Радиофизика. 2018. Т. 61, №. 11. C. 937–944.
- Hong H., Park H., Choi M. Y. Collective synchronization in spatially extended systems of coupled oscillators with random frequencies // Phys. Rev. E. 2005. Vol. 72, iss. 3. P. 036217. doi: 10.1103/PhysRevE.72.036217.
- Moriya T. Anisotropic superexchange interaction and weak ferromagnetism // Phys. Rev. 1960. Vol. 120, iss. 1. P. 91–98. doi: 10.1103/PhysRev.120.91.
- Дзялошинский И. Е. Термодинамическая теория «слабого» ферромагнетизма антиферромагнетиков // ЖЭТФ. 1957. Т. 32, №. 6. С. 1547–1563.
- Ozhogin V. I., Preobrazhenskii V. L. Effective anharmonicity of elastic subsystem in antiferromagnets // Physica B+C. 1977. Vol. 86–88. P. 979–981. doi: 10.1016/0378-4363(77)90768-9.
- Звездин A. K. О динамике доменных границ в слабых ферромагнетиках // Письма в ЖЭТФ. 1979. Т. 29, № 10. P. 605–610.
- Иванов Б. А., Лапченко В. Ф., Сукстанский А. Л. Поверхностные спиновые волны в антиферромагнетиках // Физика твердого тела. 1985. Т. 27, №. 1. С. 173–180.
- Acebron J. A., Bonilla L. L., P erez Vicente C. J., Ritort F., Spigler R. The Kuramoto model: A simple paradigm for synchronization phenomena // Rev. Mod. Phys. 2005. Vol. 77, iss. 1. P. 137–185. doi: 10.1103/RevModPhys.77.137.
- Rodrigues F. A., Peron T. K. D., Kurths P. J. The Kuramoto model in complex networks // Phys. Rep. 2016. Vol. 610. P. 1–98. doi: 10.1016/j.physrep.2015.10.008.
- Garg N., Bhotla S. V. H., Muduli P. K., Bhowmik D. Kuramoto-model-based data classifi-cation using the synchronization dynamics of uniform-mode spin Hall nano-oscillators // Neuromorph. Comput. Eng. 2021. Vol. 1, iss. 2. P. 024005. doi: 10.1088/2634-4386/ac3258.
- Pikovsky A., Rosenblum M. Partially integrable dynamics of hierarchical populations of coupled oscillators // Phys. Rev. Lett. 2008. Vol. 101, iss. 26. P. 264103. doi: 10.1103/PhysRevLett. 101.264103.
- Митрофанова А. Ю., Сафин А. Р., Кравченко О. В., Никитов С. А. Взаимная синхронизация антиферромагнитных спинтронных осцилляторов // Известия высших учебных заведений России. Радиоэлектроника. 2022. Т. 25, №. 5. С. 80-90. doi: 10.32603/1993-8985-2022-25-5- 80-90.
- Шахгильдян В. В., Ляховкин А. А. Системы фазовой автоподстройки частоты. M.: Связь, 1972. 447 c.
- Trees B. R., Saranathan V., Stroud D. Synchronization in disordered Josephson junction arrays: Small-world connections and the Kuramoto model // Phys. Rev. E. 2005. Vol. 71, iss. 1. P. 016215. doi: 10.1103/PhysRevE.71.016215.
- Frank T. D., Richardson M. J. On a test statistic for the Kuramoto order parameter of synchronization: An illustration for group synchronization during rocking chairs // Physica D. 2010. Vol. 239, iss. 23–24. P. 2084–2092. doi: 10.1016/j.physd.2010.07.015.
Supplementary files


