Criteria for internal fixed points existence of discrete dynamic Lotka-Volterra systems with homogeneous tournaments

封面

如何引用文章

全文:

详细

Purpose of the work is to study the dynamics of the asymptotic behavior of trajectories of discrete Lotka–Volterra dynamical systems with homogeneous tournaments operating in an arbitrary (m − 1)-dimensional simplex. It is known that a dynamic system is an object or a process for which the concept of a state is uniquely defined as a set of certain quantities at a given time, and a law describing the evolution of initial state over time is given. Mainly in questions of population genetics, biology, ecology, epidemiology and economics, systems of nonlinear differential equations describing the evolution of the process under study often arise. Since the Lotka–Volterra equations often arise in life phenomena, the main purpose of the work is to study the trajectories of discrete dynamical Lotka–Volterra systems using elements of graph theory. Methods. In the paper cards of fixed points are constructed for quadratic Lotka–Volterra mappings, that allow describing the dynamics of the systems under consideration. Results. Using cards of fixed points of a discrete dynamical system, criteria for the existence of fixed points with odd nonzero coordinates are given in a particular case, and these results on the location of fixed points of Lotka–Volterra systems are generalized accordingly in the case of an arbitrary simplex. The main results are theorems 5–9, which allow us to describe the dynamics of these systems arising in a number of genetic, epidemiological and ecological models. Conclusion. The results obtained in the paper give a detailed description of the dynamics of the trajectories of Lotka–Volterra maps with homogeneous tournaments. The map of fixed points highlights a specific area in the simplex that is most important and interesting for studying the dynamics of these maps. The results obtained are applicable in environmental problems, for example, to describe and study the cycle of biogens.

作者简介

Dilfuza Eshmamatova

Tashkent State Transport University

1-House of Temiryulchilar street of Mirabad District of Tashkent City

Mohbonu Tadhzieva

Tashkent State Transport University; National University of Uzbekistan named after Mirzo Ulugbek

Rasul Ganikhodzhaev

Tashkent State Transport University; National University of Uzbekistan named after Mirzo Ulugbek

参考

  1. Ганиходжаев Р. Н. Квадратичные стохастические операторы, функции Ляпунова и турниры // Математический сборник. 1992. Т. 183, № 8. С. 119-140.
  2. Шахиди Ф. А. О бистохастических операторах, определенных в конечномерном симплексе // Сиб. матем. журн. 2009. Т. 50, № 2. С. 463-468.
  3. Ганиходжаев Р. Н., Таджиева М. А., Эшмаматова Д. Б. Динамические свойства квадратичных гомеоморфизмов конечномерного симплекса // Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры». 2018. Т. 144. P. 104-108.
  4. Eshmamatova D., Ganikhodzhaev R. Tournaments of Volterra type transversal operators acting in a simplex Sm-1 // AIP Conference Proceedings. 2021. Vol. 2365, no. 1. P. 060009. DOI: 10.1063/ 5.0057303.
  5. Harary F. Graph Theory. Boston: Addison-Wesley, 1969. 274 p.
  6. Харари Ф., Палмер Э. Перечисление графов. Монография. М.: Мир, 1977. 324 с.
  7. Moon J. W. Topics on Tournaments. New York: Holt, Rinehart and Winston, 1968. 112 p.
  8. Ганиходжаев Р. Н. Карта неподвижных точек и функции Ляпунова для одного класса дискретных динамических систем // Математические заметки. 1994. Т. 56, № 5. С. 40-49.
  9. Ганиходжаев Р. Н., Эшмаматова Д. Б. Квадратичные автоморфизмы симплекса и асимптотическое поведение их траекторий // Владикавказский математический журнал. 2006. Т. 8, № 2. С. 12-28.
  10. Пуанкаре А. Избранные труды в трех томах. Т. 1. Новые методы небесной механики. М.: Наука, 1971. 745 с.
  11. Небел Б. Наука об окружающей среде. Как устроен мир. В 2-х томах. М.: Мир, 1993.

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).