Классификация мозговой активности при помощи синолитических сетей

Обложка

Цитировать

Полный текст

Аннотация

Поскольку мозг — это чрезвычайно сложная гиперсеть взаимодействующих между собой макроскопических подсетей, проведение полномасштабного анализа его активности представляется труднейшей задачей. Тем не менее эту задачу можно существенно упростить, анализируя соответствие различных паттернов макроскопической активности мозга, например, на снимках функциональной магнитно-резонансной томографии (фМРТ), выполнению тех или иных когнитивных задач или патологическим состояниям. Цель данной работы — предложить и протестировать метод представления данных фМРТ в виде графов, которые отражают в себе полезную для последующей классификации информацию о взаимосвязях активности областей мозга. Методы. В данной работе исследуется возможность применения синолитических сетей в анализе мозговой активности. В частности, был предложен метод построения графа, вершины которого отражают значения вокселей фМРТ, а ребра и веса ребер отражают взаимосвязи между вокселями фМРТ. Результаты и Заключение. На основе классификации фМРТ данных по характеристикам графов была показана эффективность метода на основе синолитических сетей в выявлении и передаче важной для классификации информации при построении графов.

Об авторах

Даниил Владимирович Власенко

Санкт-Петербургский государственный университет (СПбГУ)

ORCID iD: 0009-0002-4867-2896
7/9 Universitetskaya Emb., 199034 , Saint Petersburg , Russia

Алексей Анатольевич Заикин

Университетский Колледж Лондона

ORCID iD: 0000-0001-7540-1130
ResearcherId: K-6581-2017
Гувер стрит, Лондон

Денис Геннадьевич Захаров

Высшая школа экономики

ORCID iD: 0000-0003-4367-8965
SPIN-код: 8021-2904
Scopus Author ID: 26435617000
ResearcherId: Q-1962-2015
101000, Россия, Москва, ул. Мясницкая, 20

Список литературы

  1. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences of the United States of America. 1990;87(24):9868–9872. doi: 10.1073/pnas.87.24.9868.
  2. Singleton MJ. Functional magnetic resonance imaging. Yale J. Biol. Med. 2009;82(4):233.
  3. Gao JS, Huth AG, Lescroart MD, Gallant JL. Pycortex: an interactive surface visualizer for fMRI. Frontiers in Neuroinformatics. 2015;9:23. doi: 10.3389/fninf.2015.00023.
  4. Li X, Dvornek NC, Zhou Y, Zhuang J, Ventola P, Duncan JS. Graph neural network for interpreting task-fMRI biomarkers. In: Shen D, Liu T, Peters TM, Staib LH, Essert C, Zhou S, Yap PT, Khan A, editors. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Vol. 11678 of Lecture Notes in Computer Science. Cham: Springer; 2019. P. 485–493. doi: 10.1007/978-3-030-32254-0_54.
  5. Saueressig C, Berkley A, Munbodh R, Singh R. A joint graph and image convolution network for automatic brain tumor segmentation. In: Crimi A, Bakas S, editors. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Vol. 12962 of Lecture Notes in Computer Science. Cham: Springer; 2022. P. 356–365. doi: 10.1007/978-3-031-08999-2_30.
  6. Anderson A, Cohen MS. Decreased small-world functional network connectivity and clustering across resting state networks in schizophrenia: an fMRI classification tutorial. Frontiers in Human Neuroscience. 2013;7:520. doi: 10.3389/fnhum.2013.00520.
  7. Kim BH, Ye JC. Understanding graph isomorphism network for rs-fMRI functional connectivity analysis. Frontiers in Neuroscience. 2020;14:630. doi: 10.3389/fnins.2020.00630.
  8. Nazarenko T, Whitwell HJ, Blyuss O, Zaikin A. Parenclitic and synolytic networks revisited. Frontiers in Genetics. 2021;12:733783. doi: 10.3389/fgene.2021.733783.
  9. Horikawa T, Kamitani Y. Generic Object Decoding (fMRI on ImageNet) [Electronic resource]. OpenNeuro. 2019. No. ds001246. doi: 10.18112/openneuro.ds001246.v1.2.1.
  10. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. ´ Scikit-learn: Machine learning in Python. Journal of Machine Learning Research. 2011;12(85): 2825–2830.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».