Santabarbaraite from the Kamysh-Burunsky iron ore deposit, Crimea
- 作者: Gritsenko Y.D.1,2, Ogorodova L.P.1, Vigasina M.F.1, Ksenofontova D.A.1, Dedushenko S.K.3, Melchakova L.V.1, Bolshiyanov I.P.4
-
隶属关系:
- Lomonosov Moscow State University
- Fersman Mineralogical Museum RAS
- NUST MISIS
- Borissiak Paleontological Institute RAS
- 期: 卷 CLIII, 编号 4 (2024)
- 页面: 45-62
- 栏目: МИНЕРАЛЫ И ПАРАГЕНЕЗИСЫ МИНЕРАЛОВ
- URL: https://bakhtiniada.ru/0869-6055/article/view/279570
- DOI: https://doi.org/10.31857/S0869605524040048
- EDN: https://elibrary.ru/PDFNDL
- ID: 279570
如何引用文章
详细
Santabarbaraite of composition (Mg0.09Na0.14K0.03)Σ=3.00(PO4)2.00(OH)2.57∙5.02H2O forming complete and partial pseudomorphs on vivianite crystals was studied in samples from the Kamysh-Burun deposit (Kerch iron ore basin, Crimea). Its comprehensive physicochemical study was carried with use of powder X-ray diffraction, electron probe and thermal analyses, IR and Mössbauer spectroscopy. Using the Calvet microcalorimeter and the method of dissolution in a melt of 2PbO·B2O3 composition, the first data on enthalpy of the formation of studied santabarbaraite (−4849 ± 12 kJ/mol) and santabarbaraite of the ideal composition (PO4)2(OH)3·5H2O (−4900 ± 12 kJ/mol) were obtained; for them, entropies (489 and 494 J/(mol· K) and Gibbs energies of formation were calculated (−4223 ± 12 and −4257 ± 12 kJ/mol), respectively. Calculation of the Gibbs energy of vivianite oxidation reactions confirmed the preference for the formation of santabarbaraite over vivianite bypassing intermediate stage of the metavivianite formation.
全文:

作者简介
Yu. Gritsenko
Lomonosov Moscow State University; Fersman Mineralogical Museum RAS
编辑信件的主要联系方式.
Email: ygritsenko@rambler.ru
Faculty of Geology
俄罗斯联邦, Moscow; MoscowL. Ogorodova
Lomonosov Moscow State University
Email: logor48@mail.ru
Faculty of Geology
俄罗斯联邦, MoscowM. Vigasina
Lomonosov Moscow State University
Email: ygritsenko@rambler.ru
Faculty of Geology
俄罗斯联邦, MoscowD. Ksenofontova
Lomonosov Moscow State University
Email: ygritsenko@rambler.ru
Faculty of Geology
俄罗斯联邦, MoscowS. Dedushenko
NUST MISIS
Email: ygritsenko@rambler.ru
俄罗斯联邦, Moscow
L. Melchakova
Lomonosov Moscow State University
Email: ygritsenko@rambler.ru
Faculty of Geology
俄罗斯联邦, MoscowI. Bolshiyanov
Borissiak Paleontological Institute RAS
Email: ygritsenko@rambler.ru
俄罗斯联邦, Moscow
参考
- Bae S., Sihn Y., Kyung D., Yoon S., Eom T., Kaplan U., Kim H., Schäfer T., Han S., Lee W. Molecular identification of Cr(VI) removal mechanism on vivianite surface. Environ. Sci. Technol. 2018. Vol. 52. P. 10647—10656.
- Chiba K., Takahashi M., Ohshima E., Kawamata T., Sugiyama K. The synthesis of metavivianite and the oxidation sequence of vivianite. J. Miner. Petrol. Sci. 2020. Vol. 115. P. 485—489.
- Chukanov N.V. Minerals of the Kerch iron ore basin in Eastern Crimea. Mineralogical almanac. 2005. T. 8. 112 p.
- Chukanov N.V., Chervonnyi A.D. Infrared Spectroscopy of Minerals and Related Compounds. Switzerland: Springer International Publishing, 2016. 1109 p.
- Chukanov N.V., Scholz R., Aksenov S.M., Rastsvetaeva R.K., Pekov I.V., Belakovskiy D.I., Krambrock K., Paniago R.M., Righi A., Martins R.F., Belotti F.M., Bermanec V. Metavivianite, Fe2+Fe3+2(PO4)2(OH)2·6H2O: new data and formula revision. Miner. Mag. 2012. Vol. 76. N 3. P. 725—741.
- Dormann J.L., Poullen L.F. Étude par spectroscopie Mössbauer de vivianites oxydées naturelles. Bull. de Minéral. 1980. Vol. 103. P. 633—690.
- Dormann J.L., Gaspérin M., Poullen, L.F. Étude structurale de la séquence d’oxydation de la vivianite Fe3(PO4)2·8H2O. Bull. de Minéral. 1982. Vol. 105. P. 147—160.
- Fagel N., Alleman L.Y., Granina L., Hatert F., Thamo-Bozso E., Cloots R., André L. Vivianite formation and distribution in Lake Baikal sediments. Global and Planetary Changes. 2005. Vol. 46. P. 315—336.
- Frost R.L., Scholz R., Ruan X., Lima R.M.F. A thermogravimetric, scanning electron microscope and vibrational spectroscopic study of the phosphate mineral santabarbaraite from Santa Barbara mine, Tuscany, Italy. J. Therm. Anal. Calorim. 2016. Vol. 124. N 2. P. 639—644.
- Gritsenko Yu.D., Vigasina M.F., Dedushenko S.K., Ksenofontov D.A, Melchakova L.V., Ogorodova L.P. As-bearing phosphosiderite from Copiapo district, Atacama, Chile. Geochem. Int. 2022. N 10. P. 1029—1036.
- Gritsenko Yu.D., Ogorodova L.P., Vigasina M.F., Dedushenko S.K., Vyatkin S.V., Melchakova L.V., Ksenofontov D.A. Physicochemical characteristics of iron-bearing lazulite from granite pegmatites of the Patom Highlands, Irkutsk region. New data on minerals. 2023. N 3. P. 63—73 (in Russian).
- Kiseleva I.A. Thermodynamic properties and stability of pyrope. Geochemistry. 1976. N 6. P. 845—854 (in Russian).
- Kiseleva I.A., Navrotsky A., Belitsky I.A., Fursenko B.A. Thermochemical study of calcium zeolites — heulandite and stilbite. Amer. Miner. 2001. Vol. 86. P. 448—455.
- Kolitsch U., Bernhardt H.-J., Lengauer C.L., Blass G., Tillmanns E. Allanpringite, Fe3(PO4)2(OH)3·5H2O, a new ferric iron phosphate from Germany, and its close relation to wavellite. Eur. J. Miner. 2006. N 18. P. 793—803.
- Malakhovsky V.F. Geology and geochemistry of Kerch iron ores and their most important components. Kyiv: Publishing House of the Academy of Sciences of the Ukrainian SSR, 1956. 193 p. (in Russian).
- Mengmeng S., Zhiyun L., Yan X., Xuemei H. Vivianite and its oxidation products in mammoth ivory and their implications to the burial process. ACS Omega. 2021. Vol. 6. P. 22284—22291.
- Miot J., Benzerara K., Morin G., Bernard S., Beyssac O., Larquet E., Kappler A., Guyot F. Transformation of vivianite by anaerobic nitrate–reducing iron–oxidizingbacteria Geobiology. 2009. Vol. 7. P. 373—384.
- Naumov G.B., Ryzhenko B.N., Khodakovsky I.L. Handbook of thermodynamic quantities (for geologists). Moscow: Atomizdat, 1971. 239 p. (in Russian).
- Navrotsky A., Coons.W.J. Thermochemistry of some pyroxenes and related compounds. Geochim. Cosmochim. Acta. 1976. Vol. 40. P. 1281—1295.
- Ogorodova L.P., Melchakova L.V., Kiseleva I.A., Belitsky I.A. Thermochemical study of natural pollucite. Thermochim. Acta. 2003. Vol. 403. P. 251—256.
- Ogorodova L.P., Kiseleva I.A., Melchakova L.V. Thermodynamic properties of biotite. Physics-Uspekhi. 2005. N 9. P. 1569—1572 (in Russian).
- Ogorodova L.P., Kiseleva I.A., Melchakova L.V., Vigasina M.F., Spiridonov E.M. Calorimetric determination of the enthalpy of formation of pyrophyllite. Physics-Uspekhi. 2011. N 9. P. 1609—1611 (in Russian).
- Ogorodova L., Vigasina M., Melchakova L., Rusakov V., Kosova D., Ksenofontov D., Bryzgalov I. Enthalpy of formation of natural hydrous iron phosphate: vivianite. J. Chem. Thermodyn. 2017. Vol. 110. P. 193—200.
- Ogorodova L.P., Melchakova L.V., Vigasina M.F., Gritsenko Yu.D., Ksenofontov D.A. Calorimetric study of natural basic copper phosphate — pseudomalachite. Geochim. Int. 2018a. N 5. P. 484—487.
- Ogorodova L.P., Melchakova L.V., Vigasina M.F., Ksenofontov D.A. Bryzgalov I.A. Calorimetric study of natural anapaite. Geochеm. Int. 2018б. N 4. P. 397—401.
- Ogorodova L.P., Gritsenko Yu.D., Vigasina M.F., Kosova D.A., Melchakova L.V., Fomina A.D. Natural hydrous magnesium orthophosphates — boberite and kovdorskite: FTIR and Raman, thermal and thermochemical studies. Geochеm. Int. 2020. N 2. P. 189—199.
- Ogorodova L.P., Gritsenko Yu.D., Vigasina M.F., Vyatkin S.V., Melchakova L.V., Ksenofontov D.A. Enthalpy of formation of brazilianite: calorimetric data. Geochem. Int. 2022. N 11. P. 1114—1121.
- Platonov A.N., Polshin E.V., Tarashchan A.N., Vorobyov I.B. Mössbauer and optical spectroscopy of iron in some natural phosphates. In: Mineralogical digest of articles. Iv. Franco Lvov State University. Lvov: Iv. Franco Lvov State University, 1972. N 26. P. 258—268 (in Russian).
- Ponomarev V.S., Erokhin Yu.V., Pekov I.V., Chukanov N.V. Santabarbaraite from the oxidation zone of the Mednorudyanskoye deposit is the first find in the Urals. News of the Ural State University. 2017. No 4(48). P. 36—41 (in Russian).
- Popov S.P. Mineralogy of Crimea. Moscow–Leningrad: Publishing House of the USSR Academy of Sciences, 1938. 352 p. (in Russian).
- Pratesi G., Cipriani C., Giuli G., Birch W. Santabarbaraite: a new amorphous phosphate mineral. Eur. J. Miner. 2003. Vol. 15. P. 185—192.
- Prot T., Korving L., Dugulan A.I., Goubitz K., van Loosdrecht M.C.M. Vivianite scaling in wastewater treatment plants: Occurrence, formation mechanisms and migration solutions. Water Res. 2021. Vol. 197. 117045.
- Ritz C., Essene E.J., Peacor D.R. Metavivianite, Fe3(PO4)2·8H2O, a new mineral. Amer. Miner. 1974. Vol. 59. P. 896—899.
- Robie R.A., Hemingway B.S. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures. U.S. Geol. Surv. Bull. 1995. N 2131. 461 p.
- Rothe M., Frederichs T., Eder M., Kleeberg A., Hupfer M. Evidence for vivianite formation and its contribution tolong–term phosphorus retention in a recent lake sediment: anovel analytical approach. Biogeosci. 2014. Vol. 11. P. 5169—5180.
- Sameshima T., Henderson G.S., Black P.M., Rodgers K.A. X-ray diffraction studies of vivianite, metavivianite, and barićite. Miner. Mag. 1985. Vol. 49. P. 81—85.
- Ushakov S.V., Helean K.V., Navronsky A., Boatner L.A. Thermochemistry of rare-earth orthophosphates. J. Mater. Res. 2001. Vol. 16. N 9. P. 2623—2633.
- Yurk Yu. Yu., Shnyukov E.F., Lebedev Yu.S., Kirpichenko O.N. Mineralogy of the iron ore formation of the Kerch Basin. Simferopol: Krymizdat, 1960. 450 p. (in Russian).
补充文件
