Dynamic component of pressure during metamorphism in a thrust zone
- 作者: Baltybaev S.K.1,2, Vivdich E.S.1,2, Polyansky O.P.3, Sverdlova V.G.3
-
隶属关系:
- Institute of Precambrian Geology and Geochronology, the Russian Academy of Sciences
- St. Petersburg State University, Institute of the Earth Sciences
- V. S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences
- 期: 卷 33, 编号 4 (2025)
- 页面: 56-84
- 栏目: Articles
- URL: https://bakhtiniada.ru/0869-5903/article/view/305352
- DOI: https://doi.org/10.31857/S0869590325040035
- EDN: https://elibrary.ru/svstno
- ID: 305352
如何引用文章
详细
In the southeastern fragment of the Raahe-Ladoga suture zone in Russia, within the Meyeri tectonic zone, increased pressures (“overpressure”) were revealed, caused by structural-metamorphic transformations of rocks during collisional interaction of allochthonous and autochthonous blocks. It is assumed that tectonic interaction of the rigid crustal block of the Archean basement of the Karelian craton (autochthon) and the Proterozoic granulite block of the Svecofennian belt (allochthon) controls the conditions for the formation of superlithostatic pressure anomalies. Methods of mineral geobarometry and numerical thermomechanical modeling in the rocks of the thrust zone recorded pressures up to 9–11 kbar, while lithostatic pressure not exceeding 4–6 kbar. The obtained results allow us to consider that the nature of the local superlithostatic pressure up to 7–9 kbar, established by mineral geobarometers and numerical thermomechanical modeling, can be explained by the tectonic interaction of blocks with heterogeneous physical and mechanical properties, and not reflect the error of the applied mineral geobarometry instruments.
作者简介
Sh. Baltybaev
Institute of Precambrian Geology and Geochronology, the Russian Academy of Sciences; St. Petersburg State University, Institute of the Earth Sciences
Email: shauket@mail.ru
Russia; Russia
E. Vivdich
Institute of Precambrian Geology and Geochronology, the Russian Academy of Sciences; St. Petersburg State University, Institute of the Earth Sciences
Email: shauket@mail.ru
Russia; Russia
O. Polyansky
V. S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences
Email: shauket@mail.ru
Russia
V. Sverdlova
V. S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: shauket@mail.ru
Russia
参考
- Азимов П.Я., Ризвановa Н.Г. Проявление позднесвекофеннского метаморфизма повышенных давлений в зональном метаморфическом комплексе Северного Приладожья (Юго-Восток Фенноскандинавского щита) // Петрология. 2021. Т. 29. № 3. С. 292–308. https://doi.org/10.31857/S0869590321020023
- Балтыбаев Ш.К., Вивдич Э.С. Эволюция Мейерской надвиговой зоны Северного Приладожья (Республика Карелия, Северо-Запад России): P–T условия формирования минеральных парагенезисов и геодинамические реконструкции // Геотектоника. 2021. Т. 225. № 4. С. 73–87. https://doi.org/10.31857/S0016853X21040032
- Балтыбаев Ш.К., Глебовицкий В.А., Козыре- ва И.В. и др. Мейерский надвиг – главный элемент строения сутуры на границе Карельского кратона и Свекофеннского пояса в Приладожье, Балтийский щит // Докл. АН. 1996. Т. 348. № 3. С. 353-356.
- Балтыбаев Ш.К., Глебовицкий В.А., Козырева И.В. и др. Геология и петрология свекофеннид Приладожья. СПб.: Изд. СПбГУ, 2000. 199 с.
- Балтыбаев Ш.К., Левченков О.А., Бережная Н.Г. и др. Время и длительность свекофеннской плутоно-метаморфической активности на юго-востоке Балтийского щита (Приладожье) // Петрология. 2004. Т. 12. № 4. С. 374–393.
- Балтыбаев Ш.К., Левченков О.А., Левский Л.К. Свекофеннский пояс Фенноскандии: пространственно-временная корреляция раннепротерозойских эндогенных процессов. СПб.: Наука, 2009. 328 с.
- Балтыбаев Ш.К., Вивдич Э.С., Галанкина О.Л., Борисова Е.Б. Флюидный режим формирования гнейсов в Мейерской надвиговой зоне Северного Приладожья (Юго-Восток Фенноскандинавского щита) // Петрология. 2022. Т. 30. № 2. С. 166–193. https://doi.org/10.31857/S0869590322020029
- Балтыбаев Ш.К., Саватенков В.М., Петрако- ва М.Е. T–t эволюция раннепротерозойских пород Северного Приладожья по данным изучения U-Pb, Rb-Sr и Sm-Nd систем в минералах // Геодинамика и тектонофизика. 2024. Т. 15. № 3. 0759. https://doi.org/10.5800/GT-2024-15-3-0759
- Вивдич Э.С., Балтыбаев Ш.К., Галанкина О.Л. Метаморфические минеральные реакции и парагенезисы в породах Мейерской тектонической зоны (Юго-Восток Фенноскандинавского щита) // Петрология. 2024. Т. 32. № 2. C. 195–217. https://doi.org/10.31857/s0869590324020046
- Гульбин Ю.Л. P–T тренды и моделирование эволюции минерального состава метапелитов Северного Приладожья в системе MnNCKFMASH // Записки РМО. 2014. Т. 143. № 6. С. 34–53.
- Коробейников С.Н. Нелинейное деформирование твердых тел. Новосибирск: Наука СО РАН, 2000. 262 с.
- Кулаковский А.Л., Морозов Ю.А., Смульская А.И. Стресс–метаморфизм и стресс–метаморфиты в докембрии Приладожья // Тр. КарНЦ РАН. 2015. № 7. С. 19–35. https://doi.org/10.17076/geo159
- Полянский О.П., Бабичев А.В., Коробейни- ков С.Н., Ревердатто В.В. Компьютерное моделирование гранитогнейсового диапиризма в земной коре: контролирующие факторы, длительность и температурный режим // Петрология. 2010. № 4. С. 450–466.
- Полянский О.П., Лиханов И.И., Бабичев А.В. и др. Тектониты Приенисейской сдвиговой зоны (Енисейский кряж): свидетельства и термомеханическая численная модель генерации сверхлитостатического давления // Петрология. 2024. Т. 32. № 1. С. 19–45. https://doi.org/10.31857/S0869590324010036
- Татаурова А.А., Стефанов Ю.П., Деев Е.В. Механизмы формирования тектонических структур в зонах сочленения горных хребтов и прилегающих впадин: геомеханическое численное моделирование// Геология и геофизика. 2024. https://doi.org/10.15372/GIG2024187
- Babeyko A., Sobolev S., Trumbull R. et al. Numerical models of crustal scale convection and partial melting beneath the Altiplano-Puna plateau // Earth and Planetary Science Letters. 2002. V. 199. P. 373–388. https://doi.org/10.1016/S0012-821X(02)00597-6
- Baltybaev S.K. Svecofennian orogen of the Fennoscandian shield: Compositional and isotopic zoning and its tectonic interpretation // Geotectonics. 2013. V. 47. No 5. P. 452–464. https://doi.org/10.1134/S0016852113060022
- Beaumont C., Kamp J.J., Hamilton J., Fullsack P. The continental collision zone, South Island, New Zealand: Comparison of geodynamical models and observation // Journal of Geophysical Research. 1996. V. 101 (B2). P. 3333–3359. https://doi.org/10.1029/95JB02401
- Berman R.G. Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2 // Journal of Petrology. 1988. V. 29. No 2. P. 445–522. https://doi.org/10.1093/petrology/29.2.445
- Berman R.G. Thermobarometry using multi-equilibrium calculations: A new technique with petrologic applications // Canadian Mineralogist. 1991. V. 29. No 4. P. 833–855.
- Berman R.G. WinTWQ (version 2.3): A software package for performing internally-consistent thermobarometric calculations // Geological Survey of Canada. 2007. Open File 5462 (revised). URL: https://doi.org/10.4095/223228
- Berman R.G., Aranovich L.Y. Optimized standard state and solution properties of minerals I. Model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO-MgO-CaO-A12O3-TiO2-SiO2 // Contribution to Mineralogy and Petrology. 1996. V. 126. P. 1–24. https://doi.org/10.1007/s004100050232
- Berman R.G., Aranovich L.Ya., Rancourt D.G., Mercier D.G. Reversed phase equilibrium constraints on the stability of Mg-Fe-Al biotite // American Mineralogist. 2007. V. 92. No 1. P. 139–150. https://doi.org/ 10.2138/am.2007.2051
- Bos B., Spiers C.J. Frictional-viscous flow of phyllosilicate-bearing fault rock: Microphysical model and implications for crustal strength profiles // Journal of Geophysical Research. 2002. V. 107 (B2). https://doi.org/ 10.1029/2001JB000301
- Buiter S.J.H., Babeyko A.Yu., Ellis S. et al. The numerical sandbox: сomparison of model results for a shortening and an extension experiment // Eds. S.J.H. Buiter, G. Schreurs. Analogue and Numerical Modelling of Crustal-Scale Processes. Geological Society, London, Special Publications. 2006. V. 253. P. 29–64.
- Chu X., Ague J.J., Podladchikov Y.Y., Tian M. Ultrafast eclogite formation via melting-induced overpressure // Earth and Planetary Science Letters. 2017. V. 479. P. 1–17. https://doi.org/10.1016/j.epsl.2017.09.007
- Connolly J.A. Multivariable phase–diagrams – an algorithm based on generalized thermodynamics // American Journal of Science. 1990. V. 290. P. 666–718. https://doi.org/10.2475/ajs.290.6.666
- Dale J., Holland T., Powell R. Hornblende-garnet-plagioclase thermobarometry: A natural assemblage calibration of the thermodynamics of hornblende // Contribution to Mineralogy and Petrology. 2000. V. 140. P. 353–362. https://doi.org/10.1007/s004100000187
- England P.C., Thompson A.B. Pressure-temperature-time paths of regional metamorphism I. Heat transfer during the evolution of regions of thickened continental crust // Journal of Petrology. 1984. V. 25. P. 894–928. https://doi.org/10.1093/petrology/25.4.894
- Fullsack P. An arbitrary lagrangian-eulerian formulation for creeping flows and its applications in tectonic models // Geophysical Journal International. 1995. V. 120. P. 1–23.
- Gaal G., Gorbatschev R. An outline of the Precambrian evolution of the Baltic Shield // Precambrian Research. 1987. V. 35. No 1. P. 15–25. https://doi.org/10.1016/0301-9268(87)90044-1
- Gerya T. Tectonic overpressure and underpressure in lithospheric tectonics and metamorphism // Journal of Metamorphic Geology. 2015. V. 33. P. 785–800. https://doi.org/10.1111/jmg.12144
- Gerya T.V., Yuen D.A. Rayleigh–Taylor instabilities from hydration and melting propel “cold plumesˮ at subduction zones // Earth and Planetary Science Letters. 2003. V. 212. No 1–2. P. 47–62. https://doi.org/10.1016/S0012-821X(03)00265-6
- Green E.C.R., White R.W., Diener J.F.A. et al. Activity–composition relations for the calculation of partial melting equilibria in metabasic rocks // Journal of Metamorphic Geology. 2016. V. 34. P. 845–869. https://doi.org/ 10.1111/jmg.12211
- Hawthorne F.C., Oberti R., Harlow G.E. et al. Nomenclature of the amphibole supergroup // American Mineralogist. 2012. V. 97. No 11–12. P. 2031–2048. https://doi.org/10.2138/am.2012.4276
- Holland T.J.B. Powel R. An internally-consistent thermodynamic dataset for phases of petrological interest // Journal of Metamorphic Geology. 1998. V. 16. P. 309–344. https://doi.org/10.1111/j.1525-1314.1998.00140.x
- Holland T.J.B., Powell R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids // Journal of Metamorphic Geology. 2011. V. 29. P. 333–383. https://doi.org/10.1111/j.1525-1314.2010.00923.x
- Jamtveit B., Moulas E., Andersen T.B. et al. High pressure metamorphism caused by fluid induced weakening of deep continental crust // Scientific Reports. 2018. V. 8. https://doi.org/10.1038/s41598-018-35200-1
- Kaus B.J.P. Modelling approaches to geodynamic processes. PhD thesis, Los Angeles: University of California, 2005. ETH Zurich.
- Korobeynikov S.N., Reverdatto V.V., Polyan- skii O.P. et al. Computer simulation of underthrusting and subduction due to collision of slabs // Numerical Analysis and Applications. 2009. V. 2. No 1. P. 58–73. https://doi.org/10.1134/S1995423909010066
- Korsman K., Korja T., Pajunen M. et al. and GGT/SVEKA Working Group. The GGT/SVEKA Transect: Structure and Evolution of the Continental Crust in the Paleoproterozoic Svecofennian Orogen in Finland // International Geology Review. 1999. V. 41. P. 287–333.
- Kremenetsky A.A., Milanovsky S.Y., Ovchinni- kov L.N. A heat generation model for the continental crust based on deep drilling in the Baltic Shield // Tectonophysics. 1989. V. 159. P. 231–246.
- Kronenberg A.K., Tullis J. Flow strengths of quartz aggregates: grain size and pressure effects due to hydrolytic weakening // Journal of Geophysical Research: Solid Earth. 1984. V. 89 (B6). P. 4281–4297. https://doi.org/10.1029/JB089iB06p04281
- Kukkonen I.T., Peltonen P. Xenolith-controlled geotherm for the central Fennoscandian Shield: Implications for lithosphere–asthenosphere relations // Tectonophysics. 1999. V. 304. P. 301–315.
- Lahtinen R., Huhma H., Kousa J. Contrasting source components of the Paleoproterozoic Svecofennian metasediments: detrital zircon U-Pb, Sm-Nd and geochemical data // Precambrian Research. 2002. V. 116. P. 81–109.
- Leak B.E., Woolley A.R., Arps C.E.S. et al. Nomenclature of Amphiboles: Report of the sub-committee on amphiboles of the international mineralogical association. Commission on new minerals and mineral names // American Mineralogist. 1997. V. 82. P. 1019–1037. https://doi.org/10.1180/minmag.1997.061.405.13
- Leloup P., Ricard Y., Battaglia J., Lacassin R. Shear heating in continental strike-slip shear zones: Model and field examples // Geophysical Journal International. 1999. V. 136. No 1. P. 19–40. https://doi.org/10.1046/j.1365-246X.1999.00683.x
- Li Z., Gerya T.V., Burg J.P. Influence of tectonic overpressure on P–T paths of HP-UHP rocks in continental collision zones: Thermomechanical modelling // Journal of Metamorphic Geology. 2010. V. 28. P. 227–247. https://doi.org/10.1111/j.1525-1314.2009.00864.x
- Mancktelow N.S. Tectonic overpressure in competent mafic layers and the development of isolated eclogites // Journal of Metamorphic Geology. 1993. V. 11. P. 801–812. https://doi.org/10.1111/j.1525-1314.1993.tb00190.x
- Mancktelow N.S. Nonlithostatic pressure during sediment subduction and the development and exhumation of high-pressure metamorphic rocks // Journal of Geophysical Research. 1995. V. 100. P. 571–583. https://doi.org/10.1029/94JB02158
- Mancktelow N.S. Tectonic pressure: Theoretical concepts and modelled examples // Lithos. 2008. V. 103. P. 149–177. https://doi.org/10.1016/j.lithos.2007.09.013
- MARC Users Guide. Vol. A: Theory and Users Information. Santa Ana (CA): MSC. Software Corporation. 2010.
- Marques F.O., Ranalli G., Mandal N. Tectonic overpressure at shallow depth in the lithosphere: the effects of boundary conditions // Tectonophysics. 2018a. V. 746. https://doi.org/10.1016/j.tecto.2018.03.022
- Marques F.O., Mandal N., Ghosh S. et al. Channel flow, tectonic overpressure, and exhumation of high-pressure rocks in the Greater Himalayas // Solid Earth. 2018b. V. 9. P. 1061–1078. https://doi.org/10.5194/se-9-1061-2018
- Moulas E., Podladchikov Y.Y., Aranovich L.Y., Kostopoulos D. The problem of depth in geology: When pressure does not translate into depth // Petrology. 2013. V. 21. No 6. P. 577–587. https://doi.org/10.1134/S0869591113060052
- Nironen M. The Svecofennian Orogen: a tectonic model // Precambrian Research. 1997. V. 86. No 1–2. P. 21–44.
- Perchuk A.L., Safonov O.G., Smit C.A. et al. Precambrian ultra-hot orogenic factory: Making and reworking of continental crust // Tectonophysics. 2018. V. 746. P. 572–586. https://doi.org/10.1016/j.tecto.2016.11.041
- Petrini K., Podladchikov Y. Lithospheric pressure depth relationship in compressive regions of thickened crust // Journal of Metamorphic Geology. 2000. V. 18. P. 67–77. https://doi.org/10.1046/j.1525-1314.2000.00240.x
- Ranalli G. Rheology of the Earth. London, Glasgow, Weinheim, New York, Tokyo, Melbourne, Madras: Chapman & Hall, 1995. 413 p.
- Reuber G., Kaus B., Schmalholz S., White R. Nonlithostatic pressure during subduction and collision and the formation of (ultra)high-pressure rocks // Geology. 2016. V. 44. G37595.1. https://doi.org/10.1130/G37595.1
- Reverdatto V.V., Likhanov I.I., Polyansky O.P. et al. Causes, geodynamic factors and models of metamorphism // The Nature and Models of Metamorphism. Switzerland: Springer Geology, 2019. P. 83–228. https://doi.org/10.1007/978-3-030-03029-2_3
- Rutland R.W.R. Tectonic overpressures, in Controls of Metamorphism. Eds. W.S. Pitcher, G.W. Flinn. Edinburgh: Oliver and Boyd, 1965. P. 119–139.
- Schmalholz S.M., Podladchikov Y.Y. Tectonic overpressure in weak crustal-scale shear zones and implications for the exhumation of high-pressure rocks // Geophysical Research Letters. 2013. V. 40. P. 1984–1988. https://doi.org/10.1002/grl.50417
- Schmalholz S.M., Medvedev S., Lechmann S.M., Podladchikov Y. Relationship between tectonic overpressure, deviatoric stress, driving force, isostasy and gravitational potential energy // Geophysical Journal International. 2014. V. 197. P. 680–696. https://doi.org/ 10.1093/gji/ggu040
- Schreurs G., Buiter S.J.H., Boutelier D. et al. Analogue benchmarks of shortening and extension experiments // Eds. S.J.H. Buiter, G. Schreurs. Analogue and Numerical Modelling of Crustal-Scale Processes. Geological Society, London, Special Publications. 2006. V. 253. P. 1–27.
- Selzer C., Buiter S.J.H., Pfiffner O.A. Numerical modelling of frontal and basal accretion at collisional margins // Tectonics. 2008. V. 27. TC3001. https://doi.org/10.1029/2007TC002169.
- Tajčmanová L., Vrijmoed J., Moulas E. Grain-scale pressure variations in metamorphic rocks: implications for the interpretation of petrographic observations // Lithos. 2015. V. 216–217. P. 338–351. https://doi.org/10.1016/j.lithos.2015.01.006
- Vrijmoed J.C., Podladchikov Y.Y., Andersen T.B., Hartz E.H. An alternative model for ultra-high pressure in the Svartberget Fe-Ti garnet-peridotite, Western Gneiss Region, Norway // European Journal of Mineralogy. 2009. V. 21. P. 1119–1133. https://doi.org/10.1127/0935-1221/2009/0021-1985
- White R., Powell R., Johnson T. The effect of Mn on mineral stability in metapelites revisited: New a-x relations for manganese-bearing minerals // Journal of Metamorphic Geology. 2014. V. 32 № 8. P. 261–286. https://doi.org/10.1111/jmg.12095
- Whitney D.L., Evans B.W. Abbreviations for rock-forming minerals // American Mineralogist. 2010. V. 95. P. 185–187. https://doi.org/10.2138/am.2010.3371
- Zhou Y., Rybacki E., Wirth R. et al. Creep of partially molten fine-grained gabbro under dryconditions // Journal of Geophysical Research. 2012. V. 117. B05204. https://doi.org/10.1029/2011JB008646
补充文件
