BASALT MELTING IN DRY AND WET SYSTEMS: THERMODYNAMIC MODELING, PARAMETERIZATION, AND COMPARISON WITH EXPERIMENTAL DATA

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Metabasite melting is a large-scale geological process that contributes to the formation of felsic volcanics and, to a greater extent, tonalite-trondhjemite-granodiorite (TTG) complexes, which make up a significant part of ancient continental crust. Based on the results of phase equilibrium modelling using the Perple_X software package, melting parameterisation was performed for three compositions: anhydrous mid-ocean ridge basalt (MORB), MORB-H2O (2.78 wt % H2O) and hydrated basalt (AOC, altered oceanic crust, 2.78 wt % H2O) for temperatures of 500–1600°С and pressures of 0.0001–3 GPa. The obtained expressions are in good agreement with the few experimental data and show that for hydrous compositions (MORB-H2O and AOC) there is a sharp increase in melt volume (up to 20 vol %) in the first 20–30°C after passing the water solidus temperature, the subsequent increase in temperature leads to a more restrained increase in the degree of melting. Modelling has shown that near-solidus melts in hydrous systems have rhyolitic and trachydacite compositions. A further increase in the degree of melting leads to a decrease in SiO₂ and alkaline elements and an increase in CaO, MgO and FeO. The change in volume and composition of the melt is considered in the context of peritectic reactions, as well as changes in H2O content. Application of the melting parameterisation to metabasalts from subducting slabs in the Cascadia and Central Aleutian subduction hot zones has revealed different degrees of melting of these rocks along the corresponding geotherms; the products of such melting are adakite magmas. The proposed parameterisation of rock melting can be used to analyse the mechanisms of felsic rock formation in different geodynamic settings and can be integrated into existing petrological and petrological-thermomechanical models.

Авторлар туралы

A. Sapegina

Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences; M.V. Lomonosov Moscow State University, Department of Geology

Email: ann.sapegina@gmail.com
Chernogolovka, Moscow Region, Russia; Moscow, Russia

A. Perchuk

M.V. Lomonosov Moscow State University, Department of Geology; Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: ann.sapegina@gmail.com
Moscow, Russia; Chernogolovka, Moscow Region, Russia

Әдебиет тізімі

  1. Bach W., Peucker-Ehrenbrink B., Hart S.R., Blusztajn J.S. Geochemistry of hydrothermally altered oceanic crust: DSDP/ODP Hole 504B – Implications for seawater-crust exchange budgets and Sr- and Pb-isotopic evolution of the mantle // Geochem. Geophys. Geosyst. 2003. V. 4. № 3. P. 2002GC000419. https://doi.org/10.1029/2002GC000419
  2. Blatter D.L., Sisson T.W., Hankins W.B. Crystallization of oxidized, moderately hydrous arc basalt at mid- to lower-crustal pressures: Implications for andesite genesis // Contrib. Mineral. Petrol. 2013. V. 166. № 3. P. 861–886. https://doi.org/10.1007/s00410-013-0920-3
  3. Carter L.B., Skora S., Blundy J.D. et al. An experimental study of trace element fluxes from subducted oceanic crust // J. Petrol. 2015. V. 56. № 8. P. 1585–1606. https://doi.org/10.1093/petrology/egv046
  4. Castillo P.R. Adakite petrogenesis // Lithos. 2012. V. 134–135. P. 304–316. https://doi.org/10.1016/j.lithos.2011.09.013
  5. Clemens J.D., Yearron L.M., Stevens G. Barberton (South Africa) TTG magmas: Geochemical and experimental constraints on source-rock petrology, pressure of formation and tectonic setting // Precambr. Res. 2006. V. 151. № 1–2. P. 53–78. https://doi.org/10.1016/j.precamres.2006.08.001
  6. Connolly J.A.D. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation // Earth Planet. Sci. Lett. 2005. V. 236. № 1. P. 524–541. https://doi.org/10.1016/j.epsl.2005.04.033
  7. Dale J., Holland T., Powell R. Hornblende–garnet–plagioclase thermobarometry: A natural assemblage calibration of the thermodynamics of hornblende // Contrib. Mineral. Petrol. 2000. V. 140. № 3. P. 353–362. https://doi.org/10.1007/s004100000187
  8. Feig S.T., Koepke J., Snow J.E. Effect of water on tholeiitic basalt phase equilibria: An experimental study under oxidizing conditions // Contrib. Mineral. Petrol. 2006. Т. 152. № 5. С. 611–638. https://doi.org/10.1007/s00410-006-0123-2
  9. Gale A., Dalton C.A., Langmuir C.H. et al. The mean composition of ocean ridge basalts: MEAN MORB // Geochem. Geophys. Geosyst. 2013. V. 14. № 3. P. 489–518. https://doi.org/10.1029/2012GC004334
  10. Grove T.L., Kinzler R.J., Bryan W.B. Fractionation of mid-ocean ridge basalt (MORB) // Eds. J.P. Morgan, D.K. Blackman, J.M. Sinton. Geophysical Monograph Series. Washington, D.C.: American Geophysical Union, 1992. P. 281–310. https://doi.org/10.1029/GM071p0281
  11. Hernández-Uribe D., Hernández-Montenegro J.D., Cone K.A., Palin R.M. Oceanic slab-top melting during subduction: Implications for trace-element recycling and adakite petrogenesis // Geology. 2020. V. 48. № 3. P. 216–220. https://doi.org/10.1130/G46835.1
  12. Hernández-Uribe D., Palin R.M., Cone K.A., Cao W. Petrological implications of seafloor hydrothermal alteration of subducted mid-ocean ridge basalt // J. Petrol. 2021. V. 61. № 9. egaa086. https://doi.org/10.1093/petrology/egaa086
  13. Hernández-Montenegro J.D., Palin R.M., Zuluaga C.A., Hernández-Uribe D. Archean continental crust formed by magma hybridization and voluminous partial melting // Sci. Rep. 2021. V. 11. № 1. P. 5263. https://doi.org/10.1038/s41598-021-84300-y
  14. Holland T., Powell R. Activity-composition relations for phases in petrological calculations: An asymmetric multicomponent formulation // Contrib. Mineral. Petrol. 2003. V. 145. № 4. P. 492–501.
  15. Holland T.J.B., Powell R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids // J. Metamorph. Geol. 2011. V. 29. № 3. P. 333–383. https://doi.org/10.1111/j.1525-1314.2010.00923.x
  16. Holland T.J.B., Green E.C. R., Powell R. Melting of peridotites through to granites: a simple thermodynamic model in the system KNCFMASHTOCr // J. Petrol. 2018. V. 59. № 5. P. 881–900. https://doi.org/10.1093/petrology/egy048
  17. Holloway J.R., Burnham C.W. Melting relations of basalt with equilibrium water pressure less than total pressure // J. Petrol. 1972. V. 13. № 1. P. 1–29. https://doi.org/10.1093/petrology/13.1.1
  18. Johnson K.T.M., Kushiro I. Segregation of high-pressure partial melts from peridotite using aggregates of diamond: A new experimental approach // Geophys. Res. Lett. 1992. Т. 19. № 16. С. 1703–1706.
  19. Katz R.F., Spiegelman M., Langmuir C.H. A new parameterization of hydrous mantle melting // Geochem. Geophys. Geosyst. 2003. V. 4. № 9. P. 2002GC000433. https://doi.org/10.1029/2002GC000433
  20. Kelley K.A., Plank T., Ludden J., Staudigel H. Composition of altered oceanic crust at ODP sites 801 and 1149 // Geochem. Geophys. Geosyst. 2003. V. 4. № 6. P. 2002GC000435. https://doi.org/10.1029/2002GC000435
  21. Kendrick J., Yakymchuk C. Garnet fractionation, progressive melt loss and bulk composition variations in anatectic metabasites: Complications for interpreting the geodynamic significance of TTGs // Geosci. Frontiers. 2020. V. 11. № 3. P. 745–763. https://doi.org/10.1016/j.gsf.2019.12.001
  22. Kessel R., Ulmer P., Pettke T. et al. The water–basalt system at 4 to 6 GPa: Phase relations and second critical endpoint in a K-free eclogite at 700 to 1400°C // Earth Planet. Sci. Lett. 2005. V. 237. № 3–4. P. 873–892. https://doi.org/10.1016/j.epsl.2005.06.018
  23. Koepke J., Feig S. T., Snow J., Freise M. Petrogenesis of oceanic plagiogranites by partial melting of gabbros: An experimental study // Contrib. Mineral. Petrol. 2004. V. 146. № 4. P. 414–432. https://doi.org/10.1007/s00410-003-0511-9
  24. Lambert I.B., Wyllie P.J. Melting of gabbro (quartz eclogite) with excess water to 35 kilobars, with geological applications // J. Geol. 1972. V. 80. № 6. P. 693–708. https://doi.org/10.1086/627795
  25. Laporte D., Toplis M.J., Seyler M., Devidal J.-L. A new experimental technique for extracting liquids from peridotite at very low degrees of melting: Application to partial melting of depleted peridotite // Contrib. Mineral. Petrol. 2004. V. 146. № 4. P. 463–484. https://doi.org/10.1007/s00410-003-0509-3
  26. Le Maitre R.W., Streckeisen A., Zanettin B. et al. Igneous rocks: a classification and glossary of terms // Recommendation of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks. Cambridge: Cambridge University Press, 2005. 2-ed. 236 p. https://doi.org/10.1017/CBO9780511535581
  27. Liou P., Guo J. Generation of archaean TTG gneisses through amphibole-dominated fractionation // JGR Solid Earth. 2019. V. 124. № 4. P. 3605–3619. https://doi.org/10.1029/2018JB017024
  28. Litasov K.D., Foley S.F., Litasov Y.D. Magmatic modification and metasomatism of the subcontinental mantle beneath the Vitim volcanic field (East Siberia): Evidence from trace element data on pyroxenite and peridotite xenoliths from Miocene picrobasalt // Lithos. 2000. V. 54. № 1–2. P. 83–114. https://doi.org/10.1016/S0024-4937(00)00016-5
  29. Martin H. Adakitic magmas: Modern analogues of Archaean granitoids // Lithos. 1999. V. 46. № 3. P. 411–429. https://doi.org/10.1016/j.lithos.2004.04.048
  30. Martin L.A.J., Hermann J. Experimental phase relations in altered oceanic crust: Implications for carbon recycling at subduction zones // J. Petrol. 2018. V. 59. № 2. P. 299–320. https://doi.org/10.1093/petrology/egy031
  31. Moyen J.-F., Martin H. Forty years of TTG research // Lithos. 2012. V. 148. P. 312–336. https://doi.org/10.1016/j.lithos.2012.06.010
  32. Moyen J.-F., Stevens G. Experimental constraints on TTG petrogenesis: Implications for Archean geodynamics // Eds. K. Benn, J.-C. Mareschal, K.C. Condie. Geophysical Monograph Series. Washington, D.C.: American Geophysical Union, 2006. P. 149–175. https://doi.org/10.1029/164GM11
  33. Okamoto K., Maruyama S. The eclogite–garnetite transformation in the MORB + H2O system // Phys. Earth Planet. Int. 2004. V. 146. № 1–2. P. 283–296. https://doi.org/10.1016/j.pepi.2003.07.029
  34. Ono S. Stability limits of hydrous minerals in sediment and mid-ocean ridge basalt compositions: Implications for water transport in subduction zones // J. Geophys. Res. 1998. V. 103. № B8. P. 18253–18267. https://doi.org/10.1029/98JB01351
  35. Palin R.M., White R.W., Green E.C.R. Partial melting of metabasic rocks and the generation of tonalitic-trondhjemitic-granodioritic (TTG) crust in the Archaean: Constraints from phase equilibrium modelling // Precambr. Res. 2016. Т. 287. P. 73–90. https://doi.org/10.1016/j.precamres.2016.11.001
  36. Pawley A.R., Holloway J.R. Water sources for subduction zone volcanism: New experimental constraints // Science. 1993. V. 260. № 5108. P. 664–667. https://doi.org/10.1126/science.260.5108.664
  37. Pertermann M. Anhydrous partial melting experiments on MORB-like eclogite: Phase relations, phase compositions and mineral-melt partitioning of major elements at 2–3 GPa // J. Petrol. 2003. V. 44. № 12. P. 2173–2201. https://doi.org/10.1093/petrology/egg074
  38. Pertermann M., Hirschmann M.M. Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: Constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate: Partial melting of MORB-like pyroxenite // J. Geophys. Res. 2003. V. 108. № B2. https://doi.org/10.1029/2000JB000118
  39. Polat A., Wang L., Appel P.W.U. A review of structural patterns and melting processes in the Archean craton of West Greenland: Evidence for crustal growth at convergent plate margins as opposed to non-uniformitarian models // Tectonophysics. 2015. V. 662. P. 67–94. https://doi.org/10.1016/j.tecto.2015.04.006
  40. Pourteau A., Doucet L.S., Blereau E.R. et al. TTG generation by fluid-fluxed crustal melting: Direct evidence from the Proterozoic Georgetown Inlier, NE Australia // Earth Planet. Sci. Lett. 2020. V. 550. P. 116548. https://doi.org/10.1016/j.epsl.2020.116548
  41. Qian Q., Hermann J. Partial melting of lower crust at 10–15 kbar: Constraints on adakite and TTG formation // Contrib. Mineral. Petrol. 2013. V. 165. № 6. P. 1195–1224. https://doi.org/10.1007/s00410-013-0854-9
  42. Rapp R.P., Watson E.B. Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling // J. Petrol. 1995. V. 36. № 4. P. 891–931. https://doi.org/10.1093/petrology/36.4.891
  43. Rapp R.P., Watson E.B., Miller C.F. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites // Precambr. Res. 1991. V. 51. № 1–4. P. 1–25. https://doi.org/10.1016/0301-9268(91)90092-O
  44. Rapp R.P., Shimizu N., Norman M.D. Growth of early continental crust by partial melting of eclogite // Nature. 2003. V. 425. № 6958. P. 605–609. https://doi.org/10.1038/nature02031
  45. Schmidt M.W., Poli S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation // Earth Planet. Sci. Lett. 1998. V. 163. № 1–4. P. 361–379. https://doi.org/10.1016/S0012-821X(98)00142-3
  46. Sisson T.W., Kelemen P.B. Near-solidus melts of MORB + 4 wt% H2O at 0.8–2.8 GPa applied to issues of subduction magmatism and continent formation // Contrib. Mineral. Petrol. 2018. V. 173. № 9. P. 70. https://doi.org/10.1007/s00410-018-1494-x
  47. Spandler C., Hammerli J., Yaxley G.M. An experimental study of trace element distribution during partial melting of mantle heterogeneities // Chemic. Geol. 2017. V. 462. P. 74–87.
  48. Staudigel H. Chemical fluxes from hydrothermal alteration of the oceanic crust // Treatise on Geochemistry. USA: Elsevier, 2014. P. 583–606. https://doi.org/10.1016/B978-0-08-095975-7.00318-1
  49. Staudigel H., Davies G.R., Hart S.R. et al. Large scale isotopic Sr, Nd and O isotopic anatomy of altered oceanic crust: DSDP/ODP sites 417/418 // Earth Planet. Sci. Lett. 1995. V. 130. № 1–4. P. 169–185. https://doi.org/10.1016/0012-821X(94)00263-X
  50. Syracuse E.M., Van Keken P.E., Abers G.A. The global range of subduction zone thermal models // Phys. Earth Planet. Int. 2010. V. 183. № 1–2. P. 73–90. https://doi.org/10.1016/j.pepi.2010.02.004
  51. Takahashi E., Nakajima K. Melting process in the Hawaiian plume: An experimental study // Eds. E. Takahashi, P.W. Lipman, M.O. Garcia, J. Naka, S. Aramaki. Geophysical Monograph Series. Washington, D.C.: American Geophysical Union, 2002. P. 403–418. https://doi.org/10.1029/GM128p0403
  52. Takahahshi E., Nakajima K., Wright T.L. Origin of the Columbia River basalts: Melting model of a heterogeneous plume head // Earth Planet. Sci. Lett. 1998. V. 162. № 1–4. P. 63–80. https://doi.org/10.1016/S0012-821X(98)00157-5
  53. Walter M. J., Sisson T. W., Presnall D. C. A mass proportion method for calculating melting reactions and application to melting of model upper mantle lherzolite // Earth Planet. Sci. Lett. 1995. V. 135. № 1–4. P. 77–90.
  54. White R.W., Powell R., Holland T.J.B. Progress rela- ting to calculation of partial melting equilibria for metapelites // J. Metamorph. Geol. 2007. V. 25. № 5. P. 511–527. https://doi.org/10.1111/j.1525-1314.2007.00711.x
  55. White R.W., Powell R., Johnson T.E. The effect of Mn on mineral stability in metapelites revisited: New a-x relations for manganese-bearing minerals // J. Metamorph. Geol. 2014. V. 32. № 8. P. 809–828. https://doi.org/10.1111/jmg.12095
  56. Xiong X., Keppler H., Audetat A. et al. Experimental constraints on rutile saturation during partial melting of metabasalt at the amphibolite to eclogite transition, with applications to TTG genesis // Amer. Mineral. 2009. V. 94. № 8–9. P. 1175–1186. https://doi.org/10.2138/am.2009.3158
  57. Zang C., Tang H., Wang M. Effects of sediment addition on magma generation from oceanic crust in a post-collisional extensional setting: Constraints from partial melting experiments on mudstone–amphibolite/basalt at 1.0 and 1.5 GPa // J. Asian Earth Sci. 2020. V. 188. 104111.
  58. Zhang C., Holtz F., Koepke J. et al. Constraints from experimental melting of amphibolite on the depth of formation of garnet-rich restites, and implications for models of Early Archean crustal growth // Precambr. Res. 2013. V. 231. P. 206–217. https://doi.org/10.1016/j.precamres.2013.03.004
  59. Zhang H.L., Cottrell E., Solheid P.A. et al. Determination of Fe3+/ΣFe of XANES basaltic glass standards by Mössbauer spectroscopy and its application to the oxidation state of iron in MORB // Chemic. Geol. 2018. Т. 479. С. 166–175.
  60. Zhang Y., Wang C., Li W. et al. Carbon Dioxide Released From Subducted Oceanic Crust by Hydrous Carbonatitic Liquids // Geophys. Res. Lett. 2023. V. 50. № 18. e2023GL104734.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».