SYMBIOTIC EFFECTS OF THE “MICROBIOTA–HOST” SYSTEM IN THE REGULATION OF HUMAN HOMEOSTASIS
- Authors: Bukharin O.V1, Ivanova E.V1, Perunova N.B1, Chaynikova I.N1
-
Affiliations:
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of the Russian Academy of Sciences
- Issue: No 12 (2025)
- Pages: 29–47
- Section: ИЗ РАБОЧЕЙ ТЕТРАДИ ИССЛЕДОВАТЕЛЯ
- URL: https://bakhtiniada.ru/0869-5873/article/view/381770
- DOI: https://doi.org/10.7868/S3034520025120035
- ID: 381770
Cite item
Abstract
The presented review discusses symbiotic effects in the “microbiota–host” system aimed at maintaining human health, in particular, homeostasis of the intestinal biotope. Scientific publications of recent years contain extensive information on the inclusion of microbial low-molecular metabolites, “quorum sensing” molecules, and, on the host side, hormones, neurotransmitters and immunoregulatory peptides in the formation of the homeostatic network of the human body and the regulation of its physiological functions. The main pathways and mechanisms of the bidirectional influence of the microbiota on metabolic processes, the central nervous system, the immune and endocrine systems of a person, acting through common receptors and due to the similarity of the structural and functional organization of the signaling components of pro- and eukaryotic cells, are described. The study of the symbiotic effects of the microbiota opens up opportunities for regulating human health through the socalled “microbial organ”. Understanding the symbiotic relationship between the microbiota and the host forms the basis for future research, development of new diagnostic, therapeutic and preventive approaches in clinical practice, as well as the creation of biological drugs (meta-, pro- and psychobiotics) to improve physical and intellectual health of a person.
About the authors
O. V Bukharin
Institute for Cellular and Intracellular Symbiosis of the Ural Branch of the Russian Academy of Sciences
Author for correspondence.
Email: ofrc@list.ru
ORCID iD: 0000-0002-6039-5265
Academician of the Russian Academy of Sciences, Scientific Director Orenburg, Russian Federation
E. V Ivanova
Institute for Cellular and Intracellular Symbiosis of the Ural Branch of the Russian Academy of Sciences
Email: walerewna13@gmail.com
ORCID iD: 0000-0002-4974-8947
Doctor of Medical Sciences, Head of the Laboratory of Infectious Symbiology Orenburg, Russian Federation
N. B Perunova
Institute for Cellular and Intracellular Symbiosis of the Ural Branch of the Russian Academy of Sciences
Email: nbperunova@yandex.ru
ORCID iD: 0000-0002-6352-8879
Doctor of Medical Sciences, Leading Researcher of the Laboratory of Infectious Symbiology Orenburg, Russian Federation
I. N Chaynikova
Institute for Cellular and Intracellular Symbiosis of the Ural Branch of the Russian Academy of Sciences
Email: inchainicova@yandex.ru
ORCID iD: 0000-0002-8923-8829
Doctor of Medical Sciences, Leading Researcher of the Laboratory of Infectious Symbiology Orenburg, Russian Federation
References
- De Vos W.M., Tilg H., Van Hul M., Cani P.D. Gut microbiome and health: mechanistic insights // Gut. 2022, no. 71, pp. 1020–1032.
- Бухарин О.В., Иванова Е.В, Перунова Н.Б. Коренные штаммы бифидобактерий кишечника человека: индигенность через призму персистенции // Вестник РАН. 2023. № 11. С. 1071–1080. Bukharin O.V., Ivanova E.V., Perunova N.B. Native Strains of Human Intestinal Bifidobacteria: Indigeneity Through the Prism of Persistence // Herald of the Russian Academy of Sciences. 2023, no. 11, pp. 1071–1080. (In Russ.)
- Усвяцов Б.Я. Новые подходы к структурно-функциональному анализу микросимбиоценоза человека // Симбиоз и его роль в инфекции. Екатеринбург: Уро РАН, 2011. С. 74–118. Usvyatsov B.Ya. New approaches to the structural and functional analysis of human microsymbiocenosis // Symbiosis and its role in infection. Ekaterinburg: Ural Branch of the RAS, 2011. Pp. 74–118. (In Russ.)
- Бухарин О.В. Инфекционная симбиология // Журнал микробиологии, эпидемиологии и иммунобиологии. 2015. № 4. С. 4–9.
- Bukharin O.V. Infectious symbiology // Journal of Microbiology, Epidemiology and Immunobiology. 2015, no. 4, pp. 4–9. (In Russ.) Бухарин О.В., Иванова Е.В. Особенности персистенции индигенных штаммов бифидобактерий кишечника человека // Вестник РАН. 2023. № 6. С. 548–555. Bukharin O.V., Ivanova E.V. Persistence Features of Indigenous Strains of the Human Intestine Bifidobacteria // Herald of the Russian Academy of Sciences. 2023, no. 6, pp. 548–555. (In Russ.)
- Dalile B., Van Oudenhove L., Vervliet B. et al. The role of short-chain fatty acids in microbiota-gut-brain communication // Nature Reviews Gastroenterology and Hepatology. 2019, vol. 16, no. 8, pp. 461–478.
- Lai Y., Dhingra R., Zhang Z. et al. Toward elucidating the human gut microbiota–brain Axis: molecules, biochemistry, and implications for health and diseases // Biochemistry. 2021, no. 61, pp. 2806–2821.
- Захарова Л.А. Пластичность нейроэндокринной и иммунной систем в раннем развитии // Известия РАН. 2014. № 5. С. 437–447. Zakharova L.A. Plasticity of neuroendocrine and immune systems in early development // Izvestiya RAS. 2014, no. 5, pp. 437–447. (In Russ.)
- Geenen V. The appearance of the thymus and the integrated evolution of adaptive immune and neuroendocrine systems // Acta Clinica Belgica. 2012, vol. 7, no. 3, pp. 209–213.
- Eiden L.E., Gundlach A.L., Grinevich V. et al. Regulatory peptides and systems biology: A new era of translational and reverse-translational neuroendocrinology // Journal of Neuroendocrinology. 2020, vol. 32, no. 5, e12844.
- Greslehner G.P., Boem F., Chiu L. et al. Philosophical Perspectives on Neuroendocrine-Immune Interactions: The Building Block Model and Complementary Neuro-Endocrine-Immune-Microbiota Systems Approaches // Neuroendocrine-Immune System Interactions. Masterclass in Neuroendocrinology. 2023, vol. 13, pp. 31–61.
- Бухарин О.В., Стадников А.А., Перунова Н.Б. Роль окситоцина и микробиоты в регуляции взаимодействий про- и эукариот при инфекции. Екатеринбург: УрО РАН, 2018. Bukharin O.V., Stadnikov A.A., Perunova N.B. The role of oxytocin and microbiota in the regulation of interactions between pro- and eukaryotes during infection. Ekaterinburg: Ural Branch of the RAS, 2018. (In Russ.)
- Asadi A., Shadab Mehr N., Mohamadi M.H. et al. Obesity and gut–microbiota–brain axis: A narrative review // Journal of Clinical Laboratory Analysis. 2022, vol. 36, no. 5, e24420.
- Roager H.M., Licht T.R. Microbial tryptophan catabolites in health and disease // Nature communications. 2018, vol. 9 (1), 3294.
- Ситкин С.И., Ткаченко Е.И., Вахитов Т.Я. Филометаболическое ядро микробиоты кишечника // Альманах клинической медицины. 2015. № 40. C. 12–34. Sitkin S.I., Tkachenko E.I., Vakhitov T.Y. Phylometabolic core of intestinal microbiota // Almanac of Clinical Medicine. 2015, no. 40, pp. 12–34. (In Russ.)
- Qin J., Li R., Raes J. et al. Human gut microbial gene catalog established by metagenomic sequencing // Nature. 2010, vol. 464 (72859), pp. 59–65.
- Cani P.D. Human gut microbiome: hopes, threats and promises // Gut. 2018, vol. 67, no. 9, pp. 1716–1725.
- Бухарин О.В., Перунова Н.Б, Иванова Е.В. Бифидофлора при ассоциативном симбиозе человека. Екатеринбург: УрО РАН, 2014. Bukharin O.V., Perunova N.B., Ivanova E.V. Bifidoflora in associative symbiosis of man. Ekaterinburg: Ural Branch of the RAS, 2014. (In Russ.)
- Portincasa P., Bonfrate L., Vacca M. et al. Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis // International Journal of Molecular Sciences. 2022, vol. 23, no. 3, 1105.
- Riviere A., Selak M., Lantin D. et al. Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut // Frontiers in Microbiology. 2016, vol. 7 (979). https://doi.org/10.3389/fmicb.2016.00979
- Riviere A., Selak M., Geirnaert A. et al. Complementary Mechanisms for Degradation of Inulin-Type Fructans and Arabinoxylan Oligosaccharides among Bifidobacterial Strains Suggest Bacterial Cooperation // Applied and Environmental Microbiology. 2018, vol. 84, no. 9, e02893-17.
- Adak A., Khan M.R. An insight into gut microbiota and its functionalities // Cellular and Molecular Life Sciences. 2019, vol. 76, no. 3, pp. 473–493.
- Fan Y., Pedersen O. Gut microbiota in human metabolic health and disease // Nature Reviews Microbiology. 2021, vol. 19, no. 1, pp. 55–71.
- Dabke K., Hendrick G. The gut microbiome and metabolic syndrome // The Journal of clinical investigation. 2019, vol. 129, no. 10, pp. 4050–4057.
- Li Q., Ren Y., Fu X. Inter-kingdom signaling between gut microbiota and their host // Cellular and Molecular Life Sciences. 2019, vol. 76, no. 12, pp. 2383–2389.
- Шпаков А.О. Сигнальные молекулы бактерий непептидной природы qs-типа // Микробиология. 2009. № 2. С. 163–175. Shpakov A.O. QS-TYPE bacterial signal molecules of nonpeptide origin // Microbiology. 2009, no. 2, pp. 163–175. (In Russ.)
- Sperandio V., Torres A.G., Jarvis B. et al. Bacteria–host communication: the language of hormones // Proceedings of the National Academy of Sciences. 2003, vol. 100, no. 15, pp. 8951–8956.
- Freestone P.P., Williams P.H., Haigh R.D. et al. Growth stimulation of intestinal commensal Escherichia coli by catecholamines: a possible contributory factor in trauma-induced sepsis // Shock. 2002, vol. 18, no. 5, pp. 465–470.
- Strandwitz Р. Neurotransmitter modulation by the gut microbiota // Brain Research. 2018, vol. 1693, part B, pp. 128–133.
- Casertano M., Fryganas C., Valentino V. et al. Gut production of GABA by a probiotic formula: an in vitro study // Beneficial Microbes. 2024, vol. 15, no. 1, pp. 67–81.
- Strandwitz P., Kim K.H., Terekhova D. et al. GABA-modulating bacteria of the human gut microbiota // Nature Microbiology. 2019, vol. 4, no. 3, pp. 396–403.
- Sultan S., Mottawea W., Yeo J. et al. Gut microbiota extracellular vesicles as signaling molecules mediating hostmicrobiota communications // International Journal of Molecular Sciences. 2021, vol. 22 (23), 13166.
- Bukharin O.V., Perunova N.B., Nikolaev Yu.A. et al. Secondary Metabolites of Bifido- and Lactobacteria Fulfilling Signal Functions // Microbiology. 2023, vol. 92, no. 6, pp. 875–880.
- Акмаев И.Г. Нейроиммуноэндокринные взаимодействия: их роль в дисрегуляторной патологии // Патологическая физиология и экспериментальная терапия. 2001. № 4. С. 3–10. Akmaev I.G. Neuroimmunoendocrine interactions: their role in dysregulatory pathology // Pathological Physiology and Experimental Therapy. 2001, no. 4, pp. 3–10. (In Russ.)
- Фролов Б.А. Физиология и патология нейроэндокринной регуляции. М.: Медицина, 2006. Frolov B.A. Physiology and pathology of neuroendocrine regulation. Moscow: Medicine, 2006. (In Russ.)
- Корнева Е.А. Пути взаимодействия нервной и иммунной систем: история и современность, клиническое применение // Медицинская иммунология. 2020. № 3. С. 405–418. Korneva E.A. Ways of interaction of nervous and immune systems: history and modernity, clinical application // Medical Immunology. 2020, no. 3, pp. 405–418. (In Russ.)
- Ahlawat S., Asha, Sharma K.K. Gut-organ axis: a microbial outreach and networking // Letters in Applied Microbiology. 2021, vol. 72, no. 6, pp. 636–668.
- Agus A., Planchais J., Sokol H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease // Cell Host & Microbe. 2018, vol. 23, pp. 716–724.
- Goldstein A.M., Hofstra R., Burns A.J. Building a brain in the gut: Development of the enteric nervous system // Clinical Genetics. 2013, vol. 83, pp. 307–316.
- Furness J.B., Stebbing M.J. The first brain: species comparisons and evolutionary implications for the enteric and central nervous systems // Neurogastroenterology & Motility. 2018, vol. 30 (2), e13234.
- De la Fuente-Nunez C., Meneguetti B.T., Franco O.L. et al. Neuromicrobiology: How Microbes Influence the Brain // ACS Chemical Neurosciense. 2018, vol. 9, no. 2, pp. 141–150.
- Latorre R., Sternini C., De Giorgio R. et al. Enteroendocrine cells: a review of their role in brain-gut communication // Neurogastroenterology & Motility. 2016, vol. 28, no. 5, pp. 620–630.
- Kraus A., Buckley K.M., Salinas I. Sensing the world and its dangers: an evolutionary perspective in neuroimmunology // eLife. 2021, vol. 10, e66706.
- Yan Y., Ramanan D., Rozenberg M. et al. Interleukin-6 produced by enteric neurons regulates the number and phenotype of microbe-responsive regulatory T cells in the gut // Immunity. 2021, vol. 54, pp. 499–513.
- Jarret A., Jackson R., Duizer C. et al. Enteric nervous system-derived IL-18 orchestrates mucosal barrier immunity // Cell. 2020, vol. 180, pp. 50–63.
- Casertano M., Fryganas C., Valentino V. et al. Gut production of GABA by a probiotic formula: an in vitro study // Beneficial Microbes. 2024, vol.15, no. 1, pp. 67–81.
- Kulkarni D.H., Gustafsson J.K., Knoop K.A. et al. Goblet cell associated antigen passages support the induction and maintenance of oral tolerance // Mucosal Immunology. 2020, vol. 13, no. 2, pp. 271–282.
- Singh V., Roth S., Llovera G. et al. Microbiota Dysbiosis Controls the Neuroinflammatory Response after Stroke // The Journal of Neuroscience. 2016, vol. 36, no. 28, pp. 7428–7440.
- Lagomarsino V.N., Kostic A.D., Chiu I.M. Mechanisms of microbial-neuronal interactions in pain and nociception // Neurobiology of Pain. 2021, vol. 9, 100056.
- Spencer N.J., Hibberd T., Xie Z. et al. How should we define a nociceptor in the gut–brain axis? // Frontiers in Neuroscience. 2022, vol. 16, 1096405.
- O’Donnell M.P., Fox B.W., Chao P.H. et al. A neurotransmitter produced by gut bacteria modulates host sensory behaviour // Nature. 2020, vol. 583, no. 7816, pp. 415–420.
- Kuwahara A., Matsuda K., Kuwahara Y. et al. Microbiota–gut–brain axis: enteroendocrine cells and the enteric nervous system form an interface between the microbiota and the central nervous system // Biomedical Research. 2020, vol. 41, no. 5, pp. 199–216.
- Daly K., Burdyga G., Al-Rammahi M. et al. Toll-like receptor 9 expressed in proximal intestinal enteroendocrine cells detects bacteria resulting in secretion of cholecystokinin // Biochemical and Biophysical Research Communications. 2020, vol. 525, no. 4, pp. 936–940.
- Tan S., Santolaya J.L., Wright T.F. et al. Interaction between the gut microbiota and colonic enteroendocrine cells regulates host metabolism // Nature Metabolism. 2024, vol. 6, no. 6, pp.1076–1091.
- Deng L., Gillis J.E., Chiu I.M. et al. Sensory neurons: an integrated component of innate immunity // Immunity. 2024, vol. 57, no. 4, pp. 815–831.
- Silva Y.P., Bernardi A., Frozza R.L. The role of short-chain fatty acids from gut microbiota in gut-brain communication // Fronters in Endocrinology. 2020, vol. 11 (25). https://doi.org/10.3389/fendo.2020.00025
- Van De Wouw M., Boehme M., Lyte J.M. et al. Short-chain fatty acids: Microbial metabolites that alleviate stress-induced brain-gut axis alterations // Journal of Physiology. 2018, vol. 596, no. 20, pp. 4923–4944.
- Hao Z., Wang W., Guo R. et al. Faecalibacterium prausnitzii (ATCC 27766) has preventive and therapeutic effects on chronic unpredictable mild stress-induced depression-like and anxiety-like behavior in rats // Psychoneuroendocrinology. 2019, vol. 104, pp. 132–142.
- Wang T., Xu J., Xu Y. et al. Gut microbiota shapes social dominance through modulating HDAC2 in the medial prefrontal cortex // Cell Reports. 2022, vol. 38, no. 10, 110478.
- Hu M., Zheng P., Xie Y. et al. Propionate protects haloperidol-induced neurite lesions mediated by neuropeptide Y // Frontiers in Neuroscience. 2018, vol. 12, 743.
- Missiego-Beltran J., Beltran-Velasco A.I. The Role of Microbial Metabolites in the Progression of Neurodegenerative Diseases-Therapeutic Approaches: A Comprehensive Review // International Journal of Molecular Sciences. 2024, vol. 25, no. 18, 10041.
- Salliss M.E., Farland L.V., Mahnert N.D. et al. The role of gut and genital microbiota and the estrobolome in endometriosis, infertility and chronic pelvic pain // Human Reproduction Update. 2021, vol. 28, no. 1, pp. 92–131.
- Kimura I., Miyamoto J., Ohue-Kitano R. et al. Maternal gut microbiota in pregnancy influences offspring metabolic phenotype in mice // Science. 2020, vol. 367, 6481.
- Chesne J., Cardoso V., Veiga-Fernandes H. Neuro-immune regulation of mucosal physiology // Mucosal Immunology. 2019, vol. 12, no. 1, pp. 10–20.
- Ясенявская А.Л., Самотруева М.А., Башкина О.А. и др. Нейропептидная регуляция иммунитета // Иммунология. 2018. № 39. С. 326–336. Yasenyavskaya A.L., Samotrueva M.A., Bashkina O.A. et al. Neuropeptide regulation of immunity // Immunology. 2018, no. 39, pp. 326–336. (In Russ.)
- Cryan J.F., Dinan T.G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour // Nature Reviews Neuroscience. 2012, vol. 13, no. 10, pp. 701–712.
- Veiga-Fernandes H., Pachnis V. Neuroimmune regulation during intestinal development and homeostasis // Nature Immunology. 2017, vol. 18, no. 2, pp. 116–122.
- Tian L., Ma L., Kaarela T. et al. Neuroimmune crosstalk in the central nervous system and its significance for neurological diseases // Journal of Neuroinflammation. 2012, vol. 9, 155.
- Rojas O.L., Probstel A.K., Porfilio E.A. et al. Recirculating intestinal IgA-producing cells regulate neuroinflammation via IL-10 // Cell. 2019, vol. 176, no. 3, pp. 610–624.
- Sanmarco L.M., Wheeler M.A., Gutierrez-Vazquez C. et al. Gut-licensed IFN-γ+ NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes // Nature. 2021, vol. 590, no. 7846, pp.473–479.
- Colonna M., Butovsky O. Microglia function in the central nervous system during health and neurodegeneration // Annual Review of Immunology. 2017, vol. 35, pp. 441–468.
- Rua R., McGavern D.B. Advances in meningeal immunity // Trends in Molecular Medicine. 2018, vol. 24, no. 6, pp. 542–559.
- Alves de Lima K., Rustenhoven J., Da Mesquita S. et al. Meningeal γδ T cells regulate anxiety-like behavior via IL-17a signaling in neurons // Nature Immunology. 2020, vol. 21, no. 11, pp. 1421–1429.
- Lou M., Heuckeroth R.O., Tjaden N.E.B. Neuroimmune Crossroads: The Interplay of the Enteric Nervous System and Intestinal Macrophages in Gut Homeostasis and Disease // Biomolecules. 2024, vol. 14, no. 9, 1103.
- Hays K.E., Pfaffinger J.M., Ryznar R. The interplay between gut microbiota, short-chain fatty acids, and implications for host health and disease // Gut microbes. 2024, vol. 16, no. 1, 2393270.
- Zhao Y., Chen F., Wu W. et al. GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3 // Mucosal Immunology. 2018, vol. 11, no. 3, pp. 752–762.
- Ratajczak W., Rył A., Mizerski A. et al. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs) // Acta Biochimica Polonica. 2019, vol. 66, no. 1, pp. 1–12.
- Бухарин О.В., Иванова Е.В., Чайникова И.Н. и др. Влияние кишечных микросимбионтов на продукцию цитокинов в системе in vitro // Медицинская иммунология. 2023. № 6. С. 1359–1376. Bukharin O.V., Ivanova E.V., Chainikova I.N. et al. Influence of intestinal microsymbionts on the production of cytokines in the in vitro system // Medical Immunology. 2023, no. 6, pp. 1359–1376. (In Russ.)
- Челпаченко О.Е, Фисенко А.П., Данилова Е.И. и др. Прогнозирование развития реактивного артрита у детей с дисплазией соединительной ткани // Вопросы практической педиатрии. 2021. № 4. C. 54– 61. Chelpachenko O.E., Fisenko A.P., Danilova E.I. et al. Predicting the development of reactive arthritis in children with connective tissue dysplasia // Issues of Practical Pediatrics. 2021, no. 4, pp. 54–61. (In Russ.)
- Бухарин О.В., Перунова Н.Б., Чайникова И.Н. и др. Ускоренный метод определения “свой–чужой” микроорганизмов в реакции агглютинации // Инфекция и иммунитет. 2020. № 4. C. 792–796. Bukharin O.V., Perunova N.B., Chainikova I.N. et al. Accelerated method for determining “friend or foe” microorganisms in the agglutination reaction // Infection and immunity. 2020, no. 4, pp. 792–796. (In Russ.)
- Чайникова И.Н., Иванова Е.В., Бондаренко Т.А. и др. Влияние цитокинов на биоплёнкообразование кишечных микросимбионтов // Российский иммунологический журнал. 2019. № 2. С. 626–627. Chaynikova I.N., Ivanova E.V., Bondarenko T.A. et al. The effect of cytokines on biofilm formation of intestinal microsymbionts // Russian Journal of Immunology. 2019, no. 2, pp. 626–627. (In Russ.)
- Бухарин О.В., Перунова Н.Б., Чайникова И.Н. и др. Антицитокиновая активность микроорганизмов // Журнал микробиологии, эпидемиологии и иммунобиологии. 2011. № 4. С. 56–61. Bukharin O.V., Perunova N.B., Chainikova I.N. et al. Anti-cytokine activity of microorganisms // Journal of Microbiology, Epidemiology and Immunobiology. 2011, no. 4, pp. 56–61. (In Russ.)
- Wang P., Yang H.-P., Tian S. et al. Oxytocin-secreting system: A major part of the neuroendocrine center regulating immunologic activity // Journal of Neuroimmunology. 2015, vol. 289, pp. 152–161.
- Lee H.J., Macbeth A.H., Pagani J.H. et al. Oxytocin: the great facilitator of life // Progress in Neurobiology. 2009, vol. 88, no. 2, pp. 127–151.
- Carter C.S., Kenkel W.M., MacLean E.L. et al. Is Oxytocin “Nature’s Medicine”? // Pharmacological Reviews. 2020, vol. 72, no. 4, pp. 829–861.
- Noiseux N., Borie M., Desnoyers A. et al. Preconditioning of stem cells by oxytocin to improve their therapeutic potential // Endocrinology. 2012, vol. 153, no. 11, pp. 5361–5372.
- Роик В.И. Участие вазопрессина и окситоцина в регуляции уровня гликемии и обмена углеводов в печени // Вестник хирургии. 1987. № 4. С. 75–77. Roik V.I. The involvement of vasopressin and oxytocin in the regulation of glycemic levels and carbohydrate metabolism in the liver // Bulletin of Surgery. 1987, no. 4, pp. 75–77. (In Russ.)
- Gao L.Y., Drews G., Nenguin M. et al. Mechanisms of the stimulation of insulin release by arginin-vasopressin in normal mouse islets // Journal of Biological Chemistry. 1990, vol. 256, no. 26, pp. 238–291.
- Jurek B., Neumann I.D. The oxytocin receptor: From intracellular signaling to behavior // Physiological Reviews. 2018. vol. 98, no. 3, pp. 1805–1908.
- Lahaye E., Fetissov S.O. Functional role of immunoglobulin G as an oxytocin-carrier protein // Peptides. 2024, vol. 177, 171221.
- Ding C., Leow M.K., Magkos F. Oxytocin in metabolic homeostasis: implications for obesity and diabetes management // Obesity Reviews. 2019, vol. 20, no. 1, pp. 22–40.
- Varian B.J., Weber K.T., Erdman S.E. Oxytocin and the microbiome // Comprehensive Psychoneuroendocrinology. 2023, vol. 16, 100205.
- Li T., Jiang Y.H., Wang X. et. al. Immune-regulating effect of oxytocin and its association with the hypothalamicpituitary axes // Journal of Neuroimmunology. 2024, vol. 394, 578419.
- Poutahidis T., Kearney S.M., Levkovich T. et al. Microbial symbionts accelerate wound healing via the neuropeptide hormone oxytocin // PLoS One. 2013, vol. 8 (10), e78898.
- Erdman S.E., Poutahidis T. Microbes and oxytocin: benefits for host physiology and behavior // International Review of Neurobiology. 2016, vol. 131, pp. 91–126.
- Varian B.J., Poutahidis T., DiBenedictis B.T. et al. Microbial lysate upregulates host oxytocin // Brain, behavior and immunity. 2017, vol. 61, pp. 36–49.
- Danhof H.A., Lee J., Thapa A. et al. Microbial stimulation of oxytocin release from the intestinal epithelium via secretin signaling // Gut Microbes. 2023, vol. 15, no. 2, 2256043.
- Effah F., De Gusmao T., Silva N.K. et al. Region-specific sex modulation of central oxytocin receptor by gut microbiota: an ontogenic study // Developmental Neurobiology. 2021, vol. 81, pp. 149–163.
- Бухарин О.В., Перунова Н.Б., Иванова Е.В. Консорциум штаммов бифидобактерий, используемый для приготовления бифидосодержащей продукции. Патент Российской Федерации № 2805505. 2023. Бюлл. № 13. Bukharin O.V., Perunova N.B., Ivanova E.V. Consortium of bifidobacteria strains used for the preparation of bifidcontaining products. Patent of the Russian Federation no. 2805505. 2023. Bull. no. 13.
Supplementary files


