Structure and tribological characteristics of TiAlZrN-InSn system based coatings

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Thin composite solid lubricating coatings (SLC) TiAlZrN and TiAlZrN-InSn were obtained by sputtering (Ti, Al, Zr, InSn) of cathodes of different magnetrons. The structure, elemental and phase composition were studied by electron microscopy, X-ray spectral and X-ray diffraction analysis. The surface globularity of the coatings significantly increased with increasing indium content and decreasing Al/Zr concentration ratio. Different phase compositions were obtained in the coatings depending on the ratio of the main components: single-phase TiAlZrN with the lattice period a close to 4.24 Å, two-phase with InSn, two-phase, including nitride TiAlZrN with the lattice period ~4.24 Å, and ZrTiAlN, where a= 4.29–4.58 Å, and three-phase with InSn. The microhardness of the coatings reached 1056HV0,05with the highest values for a two-phase nitride structure. Tribological tests were carried out in the reciprocating wear mode. The friction coefficients of the coatings varied from 0.20 to 0.33. The lowest wear was obtained for coatings containing two nitride phases and indium in an amount of less than 3.7 at.%.

作者简介

A. Lozovan

Moscow Aviation Institute (national research university)

Email: sveta_049@mail.ru
Moscow

S. Betsofen

Moscow Aviation Institute (national research university)

Moscow

S. Savushkina

Moscow Aviation Institute (national research university)

Moscow

I. Nikolaev

Moscow Aviation Institute (national research university)

Moscow

E. Zhukov

Moscow Aviation Institute (national research university)

Moscow

A. Babaytsev

Moscow Aviation Institute (national research university)

Moscow

参考

  1. Ouyang J.-H. High-temperature solid lubricants and self-lubricating composites: A critical review / Ouyang J.-H., Li Y.-F., Zhang Y.-Z., Wang Y.-M., Wang Y.-J. // Lubricants. 2022. V.10. P.177.
  2. Lenz, B. Potential of nitrided and PVD-MoS2: Ti-coated duplex system for dry-running friction contacts / B. Lenz, S. Hoja, M. Sommer, H. Hasselbruch, A. Mehner, M. Steinbacher // Lubricants. 2022. V.10. Art.229.
  3. Пат. 2416675 РФ. Способ формирования композитных твердосмазочных покрытий на рабочих поверхностях узлов трения / Л.Н. Лесневский, В.Н. Тюрин, А.М. Ушаков; опубл. 20.04.2011. – (Patent 2416675 RF. Method of forming composite solid lubricating coatings on working surfaces of friction units / L.N. Lesnevsky, V.N. Tyurin, A.M. Ushakov; published 20.04.2011.)
  4. Holmberg, K. Coatings tribology: properties, mechanisms, techniques and applications in surface engineering / K. Holmberg, A. Matthews. – [S.l.]: Elsevier, 2009. 560 p.
  5. Zayatzev, A.N. An experimental study of tribological properties of threaded joints Inconel 718 – Grade 660 with a solid lubricant based on MoS2 / A.N. Zayatzev, J.I. Shoucheng, Y.P. Alexandrova // Proceed. 9th Intern. Conf, Industr. Eng. (ICIE). 2023. P.489.
  6. Liu C. Ultralow-friction and ultralow-wear TiN-Ag solid solution coating in base oil / Liu C., Gu X., Yang L., Song X., Wen M., Wang J., Li Q., Zhang K., Zheng W., Chen C. // J. Phys. Chem. Let. 2020. V.11(5). P.1614–1621.
  7. Блинков, И.В. Керамико-металлические (TiN–Cu) наноструктурные ионно-плазменные вакуумно-дуговые покрытия для режущего твердосплавного инструмента / И.В. Блинков, А.О. Волхонский, А.И. Лаптев, Т.А. Свиридова, Н.Ю. Табачкова, Д.С. Белов, А.В. Ершова // Изв. вузов. Порошковая металлургия и функциональные покрытия. 2013. №2. С.55–59. – (Blinkov, I.V., Volkhonskii, A.O., Laptev, A.I. et al. Ceramic-metallic (TiN-Cu) nanostructured ion-plasma vacuum-arc coatings for cutting hard-alloy tools. Russ. J. Non-ferrous Metals 55, 489–493 (2014). doi: 10.3103/S106782121405006X.)
  8. Yea, F. Nanoindentation response analysis of TiN-Cu coating deposited by magnetron sputtering / F. Yea, X. Suna // Progress in Natural Science: Mater. Intern. 2018. V.28. P.40–44.
  9. Guleryuz, C.G. Machining performance of TiN coatings incorporating indium as a solid lubricant as placeholders for microreservoir formation / C.G. Guleryuz, J.E. Krzanowski, S.C. Veldhuis, G.S. Fox-Rabinovich // Surface and Coatings Techn. 2009. V.203. P.3370–3376.
  10. Hasegava, H. Ti1–xAlxN, Ti1–xZrxN and Ti1–xCrxN films synthesized by the AIP / H. Hasegava, A. Kimura, T. Suzuki // Surface and Coatings Techn. 2000. V.132. P.76–79.
  11. Lozovan, A.A. Influence of sputtering geometry and conditions on the structure and properties of the TiN–Pb solid lubricating coatings fabricated by magnetron co-sputtering of two separate targets / A.A. Lozovan, S.Y. Betsofen, S.V. Savushkina, M.A. Lychovetsky, L.N. Lesnevsky, I.A. Nikolaev, E.P. Kubatina // Russian Metallurgy (Metally). 2022. V.Supl. P.1441–1448.
  12. Лозован, А.А. Исследование структуры и механизмов изнашивания твердых смазочных покрытий системы TIN–PB / А.А. Лозован, С.Я. Бецофен, С.В. Савушкина, М.А. Ляховецкий, Л.Н. Лесневский, И.А. Николаев, Ю.С. Павлов, Е.П. Кубатина, Л.Е. Агуреев // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2023. №8. С.64–73. – (Lozovan, A.A., Betsofen, S.Y., Savushkina, S.V. et al. Study of the Structure and Mechanisms of the Wear of Solid-Lubricant Coatings of the TiN–Pb System. J. Surf. Investig. 2023. V. 17. P. 903–911. doi: 10.1134/S1027451023040274.)
  13. Lozovan, A. Investigation of structural and tribological characteristics of TiN composite ceramic coatings with Pb additives / A. Lozovan, S. Savushkina, M. Lyakhovetsky, I. Nikolaev, S. Betsofen, E. Kubatina // Coatings. 2023. V.13. Art.1463. doi: 10.3390/coatings13081463.
  14. Guo H. Comparison of microstructures and properties of VN and VN/Ag nanocomposite films fabricated by pulsed laser deposition / Guo H., Lu C., Zhang Z. [et al.] // Appl. Phys. A. 2018. V.124. P.694.
  15. Cai Q. Adaptive VAlCN-Ag composite and VAlCN/VN-Ag multilayer coatings intended for applications at elevated temperature / Cai Q., Bai X., Pu J. // J. Mater. Sci. 2022. V.57. P.8113–8126.
  16. Лозован, А.А. Структура и трибологические характеристики покрытий TiAlN с добавками In, Sn и Pb / А.А. Лозован, С.В. Савушкина, С.Я. Бецофен, М.А. Ляховецкий, И.А. Николаев, Е.Ю. Жуков, Е.А. Данилина // Деформация и разрушение материалов. 2024. №8. С.10–19. – (Lozovan A.A., Savushkina S.V., Betzofen S.Ya., Lyakhovetskiy M.A., Nikolaev I.A., Zhukov E.Yu., Danilina E.A. Structure and tribological characteristics of TiAlN coatings with In, Sn and Pb additives // Deformation and Fracture of Materials. 2024. No. 8. P. 10–19. doi: 10.31044/1814-4632-2024-8-10-19.)
  17. Lo W.-L. Improvement of high entropy alloy nitride coatings (AlCrNbSiTiMo)N on mechanical and high temperature tribological properties by tuning substrate bias / Lo W.-L., Hsu S.-Y., Lin Y.-C., Tsai S.-Y., Lai Y.-T., Duh J.-G. // Surface and Coatings Techn. 2020. V.401. Art.126247.
  18. Wang, J. Insight into the structure and tribological and corrosion performance of high entropy (CrNbSiTiZr)C films: First-principles and experimental study / Wang, J., Zhang, H., Yu X., Wang L., Huang W., Lu Z. // Surface and Coatings Techn. 2021. V.421. Art. 127468.
  19. Thorton, J.A. Stress – related effects in thin films / J.A. Thorton, D.W. Hoffman // Thin Solid Films. 1989. V.171. P.5.
  20. Pearson, W.B. A handbook of lattice spacings and structures of metals and alloys / W.B. Pearson. – N.Y.: Pergamon Press, 1958. 1044 p.
  21. Hassine, M.B. Growth model for high-Al containing CVD TiAlN coatings on cemented carbides using intermediate layers of TiN / M.B. Hassine, H.-O. Andr´en, A.H.S. Iyer, A. Lotsari, O. Bäcke, D. Stiens, W. Janssen, T. Manns, J. Kümmel, M. Halvarsson // Surface and Coatings Techn. 2021. V.421. Art.127361.
  22. Zhou M. Phase transition and properties of Ti-Al-N thin films prepared by r.f.-plasma assisted magnetron sputtering / Zhou M., Makino Y., Noose M., Nogi K. // Thin Solid Films. 1999. V.339. P.203–208.
  23. Zhang R.-Z. Review of high entropy ceramics: design, synthesis, structure and properties / Zhang R.-Z., Reece M. J. // J. Mater. Chem. A. 2019. V.7. P.22148–22162.
  24. Sarkar, A. High-Entropy oxides: fundamental aspects and electrochemical properties / A. Sarkar, Q. Wang, A. Schiele, M.R. Chellali, S.S. Bhattacharya, D. Wang, T. Brezesinski, H. Hahn, L. Velasco, B. Breitung // Advanced Materials. 2019. V.31. Art.1806236. 9 p.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».