Виртуальная реальности как технология мультимодальной коррекции постинсультных двигательных и когнитивных нарушений в условиях многозадачности функционирования (обзор литературы)
- Авторы: Костенко Е.В.1, Петрова Л.В.1,2, Погонченкова И.В.1, Копашева В.Д.1
-
Учреждения:
- Московский научно-практический центр медицинской реабилитации, восстановительной и спортивной медицины
- Российский национальный исследовательский медицинский университет имени Н.И. Пирогова
- Выпуск: Том 28, № 5 (2022)
- Страницы: 381-394
- Раздел: Обзоры
- URL: https://bakhtiniada.ru/0869-2106/article/view/112059
- DOI: https://doi.org/10.17816/medjrf112059
- ID: 112059
Цитировать
Аннотация
Представлен обзор инновационных технологий, основанных на методах сенсомоторного переобучения пациента с использованием технологии виртуальной реальности как перспективного направления в комплексной реабилитации пациентов, перенёсших церебральный инсульт. Проанализированы работы высокого уровня доказательности (рандомизированные контролируемые исследования, метаанализы, систематические обзоры), найденные в базах данных PubMed, Cochrane Library, ClinicalTrials.gov. Подчёркивается, что тренировки с мультисенсорным воздействием на зрительный, слуховой, вестибулярный и кинестетический анализаторы в условиях многозадачности оказывают благоприятное воздействие на когнитивно-двигательное обучение и переобучение, нейропсихологический статус пациента и повышают уровень мотивации на достижение успеха в реабилитационном процессе. Синергичность мультимодальных эффектов виртуальной реальности позволяет расширить возможности и повысить эффективность медицинской реабилитации пациентов, перенесших церебральный инсульт.
Полный текст
Открыть статью на сайте журналаОб авторах
Елена Владимировна Костенко
Московский научно-практический центр медицинской реабилитации, восстановительной и спортивной медицины
Email: ekostenko58@mail.ru
ORCID iD: 0000-0003-0902-348X
SPIN-код: 1343-0947
д.м.н., профессор
Россия, МоскваЛюдмила Владимировна Петрова
Московский научно-практический центр медицинской реабилитации, восстановительной и спортивной медицины; Российский национальный исследовательский медицинский университет имени Н.И. Пирогова
Автор, ответственный за переписку.
Email: ludmila.v.petrova@yandex.ru
ORCID iD: 0000-0003-0353-553X
SPIN-код: 9440-1425
к.м.н., старший научный сотрудник
Россия, МоскваИрэна Владимировна Погонченкова
Московский научно-практический центр медицинской реабилитации, восстановительной и спортивной медицины
Email: pogonchenkovaiv@zdrav.mos.ru
ORCID iD: 0000-0001-5123-5991
SPIN-код: 8861-7367
д.м.н
Россия, МоскваВера Дмитриевна Копашева
Московский научно-практический центр медицинской реабилитации, восстановительной и спортивной медицины
Email: blackfoxyyy@gmail.com
ORCID iD: 0000-0003-2388-6011
Россия, Москва
Список литературы
- Пирадов М.А., Танашян М.М., Максимова М.Ю. Инсульт: современные технологии диагностики и лечения. 3-е изд. Москва : МЕДпресс-информ, 2018. 360 с.
- Abubakar S.A., Isezuo S.A. Health related quality of life of stroke survivors: experience of a stroke unit // Int J Biomed Sci. 2012. Vol. 8, N 3. P. 183–187.
- Brainin M., Norrving B., Sunnerhagen K.S., et al. Poststroke chronic disease management: towards improved identification and interventions for post-stroke spasticity-related complications // Int J Stroke. 2011. Vol. 6, N 1. P. 42–46. doi: 10.1111/j.1747-4949.2010.00539.x
- Mellon L., Brewer L., Hall P., et al. Cognitive impairment six months after ischaemic stroke: a profile from the ASPIRE-S study // BMC Neurol. 2015. Vol. 15. P. 31. doi: 10.1186/s12883-015-0288-2
- Фахретдинов В.В., Брынза Н.С., Курмангулов А.А. Современные подходы к реабилитации пациентов, перенесших инсульт // Вестник Смоленской государственной медицинской академии. 2019. Т 18, № 2. С. 182–189.
- Langhorne P., Coupar F., Pollock A. Motor recovery after stroke: a systematic review // Lancet Neurol. 2009. Vol. 8, N 8. P. 741–754. doi: 10.10.1016/S1474-4422(09)70150-4
- Winstein C.J., Wolf S.L., Dromerick A.W., et al. Effect of a task-oriented rehabilitation program on upper extremity recovery following motor stroke: the ICARE randomized clinical trial // JAMA. 2016. Vol. 315, N 6. P. 571–581. doi: 10.1001/jama.2016.0276
- Kwakkel G., Winters C., Van Wegen E.E., et al. Effects of unilateral upper-limb training in two distinct prognostic groups early after stroke: the EXPLICIT-stroke randomized clinical trial // Neurorehabil Neural Repair. 2016. Vol. 30, N 9. P. 804–816. doi: 10.1186/s12883-015-0288-2
- Yelnik A.P., Quintaine V., Andriantsifanetra C., et al. AMOBES (active mobility very early after stroke) a randomized controlled trial // Stroke. 2017. Vol. 8, N 2. P. 400–405. doi: 10.1161/STROKEAHA.116.014803
- Pomeroy V.M., Hunter S.M., Johansen-Berg H., et al. Functional strength training versus movement performance therapy for upper-limb motor recovery early after stroke: a RCT. Southampton (UK) : NIHR Journals Library, 2018. doi: 10.3310/eme05030
- Muresanu D.F., Heiss W.D., Hoemberg V., et al. Cerebrolysin and recovery after stroke (CARS): a randomized, placebo-controlled, double-blind, multicenter trial // Stroke. 2016. Vol. 47, N 1. P. 151–159. doi: 10.1161/STROKEAHA.115.009416
- Cramer S.C., Enney L.A., Russell C.K., et al. Proof-of-concept randomized trial of the monoclonal antibody GSK249320 versus placebo in stroke patients // Stroke. 2017. Vol. 48, N 3. P. 692–698. doi: 10.1161/STROKEAHA.116.014517
- Ford G.A., Bhakta B.B., Cozens A., et al. Safety and efficacy of co-careldopa as an add-on therapy to occupational and physical therapy in patients after stroke (DARS): a randomised, double-blind, placebo-controlled trial // Lancet Neurol. 2019. Vol. 18, N 6. P. 530–538. doi: 10.1016/S1474-4422(19)30147-4
- Bath P.M., Scutt P., Love J., et al. Pharyngeal electrical stimulation for treatment of dysphagia in subacute stroke: a randomized controlled trial // Stroke. 2016. Vol. 47, N 6. P. 1562–1570. doi: 10.1161/STROKEAHA.115.012455
- Levy R.M., Harvey R.L., Kissela B.M., et al. Epidural electrical stimulation for stroke rehabilitation: results of the prospective, multicenter, randomized, single-blinded everest trial // Neurorehabil Neural Repair. 2016. Vol. 30, N 2. P. 107–119. doi: 10.1177/1545968315575613
- Harvey R.L., Edwards D., Dunning K., et al. Randomized sham-controlled trial of navigated repetitive transcranial magnetic stimulation for motor recovery in stroke // Stroke. 2018. Vol. 49, N 9. P. 2138–2146. doi: 10.1161/STROKEAHA.117.020607
- Saposnik G., Cohen L.G., Mamdani M., et al. Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial // Lancet Neurol. 2016. Vol. 15, N 10. P. 1019–1027. doi: 10.1016/S1474-4422(16)30121-1
- Brunner I., Skouen J.S., Hofstad H., et al. Virtual reality training for upper-extremity in subacute stroke (VIRTUES): a multicenter RCT // Neurology. 2017. Vol. 89, N 24. P. 2413–2421. doi: 10.1212/WNL.0000000000004744
- Adie K., Schofield C., Berrow M., et al. Does the use of nintendo Wii SportsTM improve arm function? Trial of WiiTM in Stroke: a randomized controlled trial and economics analysis // Clin Rehabil. 2017. Vol. 31, N 2. P. 173–185. doi: 10.1177/0269215516637893
- Cramer S.C., Dodakian L., Le V., et al. Efficacy of home-based telerehabilitation vs in-clinic therapy for adults after stroke: a randomized clinical trial // JAMA Neurol. 2019. Vol. 76, N 9. P. 1079–1087. doi: 10.1001/jamaneurol.2019.1604
- Rodgers H., Bosomworth H., Krebs H.I., et al. Robot assisted training for the upper-limb after stroke (RATULS): a multicentre randomised controlled trial // The Lancet. 2019. Vol. 394, N 10192. P. 51–62. doi: 10.1016/S0140-6736(19)31055-4
- Silver B. Virtual reality versus reality in post-stroke rehabilitation // Lancet Neurol. 2016. Vol. 15, N 10. P. 996–997. doi: 10.1016/S1474-4422(16)30126-0
- Schultheis M.T., Rizzo A.A. The application of virtual reality technology in rehabilitation // Rehabilitation Psychology. 2001. Vol. 46, N 3. P. 296. doi: 10.1037/0090-5550.46.3.296
- Levin M.F., Weiss P.L., Keshner E.A. Emergence of virtual reality as a tool for upper limb rehabilitation: incorporation of motor control and motor learning principles // Phys Ther. 2015. Vol. 95, N 3. P. 415–425. doi: 10.2522/ptj.20130579
- Kleim J.A., Jones T.A. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage // J Speech Lang Hear Res. 2008. Vol. 51, N 1. P. S225–S239. doi: 10.1044/1092-4388(2008/018)
- Карпов О.Э., Даминов В.Д., Новак Э.В., и др. Технологии виртуальной реальности в медицинской реабилитации, как пример современной информатизации здравоохранения // Вестник Национального медико-хирургического Центра им. Н.И. Пирогова. 2020. T. 15, № 1. С. 89–98. doi: 10.25881/BPNMSC.2020.71.14.017
- Lee H.S., Lim J.H., Jeon B.H., Song C.S. Non-immersive virtual reality rehabilitation applied to a task-oriented approach for stroke patients: a randomized controlled trial // Restor Neurol Neurosci. 2020. Vol. 38, N 2. P. 165–172. doi: 10.3233/RNN-190975
- Merians A.S., Jack D., Boian R., et al. Virtual reality — augmented rehabilitation for patients following stroke // Phys Ther. 2002. Vol. 82, N 9. P. 898–915. doi: 10.1093/ptj/82.9.898
- Burke J.W., McNeill M., Charles D.K., et al. Optimising engagement for stroke rehabilitation using serious games // Vis Comput. 2009. Vol. 25. P. 1085–1099. doi: 10.1007/s00371-009-0387-4
- Mihelj M., Novak D., Milavec M., et al. Virtual rehabilitation en vironment using principles of intrinsic motivation and game design // Presence: Teleoperators and Virtual Environments. 2012. Vol. 21, N 1. P. 1–15. doi: 10.1162/PRES_a_00078
- Plummer P., Villalobos R.M., Vayda M.S., et al. Feasibility of dual-task gait training for community-dwelling adults after stroke: a case series // Stroke Res Treat. 2014. Vol. 2014. P. 538602. doi: 10.1155/2014/538602
- An H.J., Kim J.I., Kim Y.R., et al. The effect of various dual task training methods with gait on the balance and gait of patients with chronic stroke // J Phys Ther Sci. 2014. Vol. 26, N 8. P. 1287–1291. doi: 10.1589/jpts.26.1287
- Her J.G., Park K.D., Yang Y., et al. Effects of balance training with various dual-task conditions on stroke patients // J Phys Ther Sci. 2011. Vol. 23, N 5. P. 713–717. doi: 10.1589/jpts.23.713
- Fishbein P., Hutzler Y., Ratmansky M., et al. A preliminary study of dual-task training using virtual reality: influence on walking and balance in chronic poststroke survivors // J Stroke Cerebrovasc Dis. 2019. Vol. 28, N 11. P. 104343. doi: 10.1016/j.jstrokecerebrovasdis.2019.104343
- Петриков С.С., Гречко А.В., Щелкунова И.Г., и др. Новые перспективы двигательной реабилитации пациентов после очагового поражения головного мозга // Журнал «Вопросы нейрохирургии» имени Н.Н. Бурденко. 2019. Т. 83, № 6. С. 90–99. doi: 10.17116/neiro20198306190
- Subramaniam S., Wan-Ying Hui-Chan Ch., Bhatt T., et al. A cognitive-balance control training paradigm using wii fit to reduce fall risk in chronic stroke survivors // J Neurol Phys Ther. 2014. Vol. 38, N 4. P. 216–225. doi: 1097/NPT.0000000000000056
- Kannan L., Vora J., Bhatt T., Hughes S.L. Cognitive-motor exergaming for reducing fall risk in people with chronic stroke: a randomized controlled trial // NeuroRehabilitation. 2019. Vol. 44, N 4. P. 493–510. doi: 10.3233/NRE-182683
- Hatem S.M., Saussez G., Della Faille M., et al. Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery // Front Hum Neurosci. 2016. Vol. 10. P. 442. doi: 10.3389/fnhum.2016.00442
- Laver K.E., Lange B., George S., et al. Virtual reality for stroke rehabilitation // Cochrane Database Syst Rev. 2017. Vol. 11, N 11. P. CD008349. doi: 10.1002/14651858.CD008349.pub4
- Aminov A., Rogers J.M., Middleton S., et al. What do randomized controlled trials say about virtual rehabilitation in stroke? A systematic literature review and meta-analysis of upper-limb and cognitive outcomes // J Neuroeng Rehabil. 2018. Vol. 15, N 1. P. 29. doi: 10.1186/s12984-018-0370-2
- Aramaki A.L., Sampaio R.F., Reis A.C.S., et al. Virtual reality in the rehabilitation of patients with stroke: an integrative review // Arq Neuropsiquiatr. 2019. Vol. 77, N 4. P. 268–278. doi: 10.1590/0004-282X20190025
- Shin J.H., Kim M.Y., Lee J.Y., et al. Effects of virtual reality-based rehabilitation on distal upper extremity function and health-related quality of life: a single-blinded, randomized controlled trial // J Neuroeng Rehabil. 2016. Vol. 13. P. 17. doi: 10.1186/s12984-016-0125-x
- Hee-Tae J., Hwan K., Jugyeong J., et al. Feasibility of using the RAPAEL Smart Glove in upper limb physical therapy for patients after stroke: a randomized controlled trial // Annu Int Conf IEEE Eng Med Biol Soc. 2017. Vol. 2017. P. 3856–3859. doi: 10.1186/s12984-016-0125-x
- Choi Y.H., Paik N.J. Mobile game-based virtual reality program for upper extremity stroke rehabilitation // J Vis Exp. 2018. Vol. 133. P. 56241. doi: 10.3791/56241
- Lee H.S., Lim J.H., Jeon B.H., Song C.S. Non-immersive virtual reality rehabilitation applied to a task-oriented approach for stroke patients: a randomized controlled trial // Restor Neurol Neurosci. 2020. Vol. 38, N 2. P. 165–172. doi: 10.3233/RNN-190975
- Kang M.G., Yun S.J., Lee S.Y., et al. Effects of upper-extremity rehabilitation using smart glove in patients with subacute stroke: results of a prematurely terminated multicenter randomized controlled trial // Front Neurol. 2020. Vol. 11. P. 580393. doi: 10.3389/fneur.2020.580393
- Park Y.S., An C.S., Lim C.G. Effects of a rehabilitation program using a wearable device on the upper limb function, performance of activities of daily living, and rehabilitation participation in patients with acute stroke // Int J Environ Res Public Health. 2021. Vol. 18, N 11. P. 5524. doi: 10.3390/ijerph18115524
- El-Kafy E.M.A., Alshehri M.A., El-Fiky A.A., Guermazi M.A. The effect of virtual reality-based therapy on improving upper limb functions in individuals with stroke: a randomized control trial // Front Aging Neurosci. 2021. Vol. 13. P. 731343. doi: 10.3389/fnagi.2021.731343
- Chen J., Or C.K., Chen T. Effectiveness of using virtual reality-supported exercise therapy for upper extremity motor rehabilitation in patients with stroke: systematic review and meta-analysis of randomized controlled trials // J Med Internet Res. 2022. Vol. 24, N 6. P. e24111. doi: 10.2196/24111
- Lansberg M.G., Legault C., MacLellan A., et al. Home-based virtual reality therapy for hand recovery after stroke // PM R. 2022. Vol. 14, N 3. P. 320–328. doi: 10.1002/pmrj.12598
- Jonsdottir J., Baglio F., Gindri P., et al. Virtual reality for motor and cognitive rehabilitation from clinic to home: a pilot feasibility and efficacy study for persons with chronic stroke // Front Neurol. 2021. Vol. 12. P. 601131. doi: 10.3389/fneur.2021.601131
- Domínguez-Téllez P., Moral-Muñoz J.A., Salazar A., et al. Game-based virtual reality interventions to improve upper limb motor function and quality of life after stroke: systematic review and meta-analysis // Games Health J. 2020. Vol. 9, N 1. P. 1–10. doi: 10.1089/g4h.2019.0043
- Zhang B., Li D., Liu Y., et al. Virtual reality for limb motor function, balance, gait, cognition and daily function of stroke patients: a systematic review and meta-analysis // J Adv Nurs. 2021. Vol. 77, N 8. P. 3255–3273. doi: 10.1111/jan.14800
- Gao Y., Ma L., Lin C., et al. Effects of virtual reality-based intervention on cognition, motor function, mood, and activities of daily living in patients with chronic stroke: a systematic review and meta-analysis of randomized controlled trials // Front Aging Neurosci. 2021. Vol. 13. P. 766525. doi: 10.3389/fnagi.2021.766525
- Barcala L., Grecco L.A., Colella F., et al. Visual biofeedback balance training using wii fit after stroke: a randomized controlled trial // J Phys Ther Sci. 2013. Vol. 25, N 8. P. 1027–1032. doi: 10.1589/jpts.25.1027
- Kayabinar B., Alemdaroğlu-Gürbüz İ., Yilmaz Ö. The effects of virtual reality augmented robot-assisted gait training on dual-task performance and functional measures in chronic stroke: a randomized controlled single-blind trial // Eur J Phys Rehabil Med. 2021. Vol. 57, N 2. P. 227–237. doi: 10.23736/S1973-9087.21.06441-8
- Chen L., Lo W.L., Mao Y.R., et al. Effect of virtual reality on postural and balance control in patients with stroke: a systematic literature review // Biomed Res Int. 2016. Vol. 2016. P. 7309272. doi: 10.1155/2016/7309272
- Bruni M.F., Melegari C., De Cola M.C., et al. What does best evidence tell us about robotic gait rehabilitation in stroke patients: a systematic review and meta-analysis // J Clin Neurosci. 2018. Vol. 48. P. 11–17. doi: 10.1016/j.jocn.2017.10.048
- Bergmann J., Krewer C., Bauer P., et al. Virtual reality to augment robot-assisted gait training in non-ambulatory patients with a subacute stroke: a pilot randomized controlled trial // Eur J Phys Rehabil Med. 2018. Vol. 54, N 3. P. 397–407. doi: 10.23736/S1973-9087.17.04735-9
- Wiley E., Khattab S., Tang A. Examining the effect of virtual reality therapy on cognition post-stroke: a systematic review and meta-analysis // Disabil Rehabil Assist Technol. 2022. Vol. 17, N 1. P. 50–60. doi: 10.1080/17483107.2020.1755376
- Bernhardt J., Borschmann K.N., Kwakkel G., et al. Setting the scene for the second stroke recovery and rehabilitation roundtable // Int J Stroke. 2019. Vol. 14, N 5. P. 450–456. doi: 10.1177/1747493019851287
- Maggio M.G., Latella D., Maresca G., et al. Virtual reality and cognitive rehabilitation in people with stroke: an overview // J Neurosci Nurs. 2019. Vol. 51, N 2. P. 101–105. doi: 10.1097/JNN.0000000000000423
Дополнительные файлы
