THE INTESTINAL STROMAL CELLS: IDENTIFICATION, ORIGIN, FUNCTIONS


如何引用文章

全文:

详细

The article proposes an introduction into problem of stromal cells of mucous membrane of intestinal tract. The types and structural molecular characteristics of stromal cells are presented including their identification, origin in embryonic life and after birth. The physiologic importance of stromal elements is discussed including their plastic possibilities, ability to transit into epithelial cells and transformation of epithelial stem cells into stromal cells. The relationship of intestinal stromal cells with bone marrow, mesenchymal stem elements and hematopoietic stem cells is demonstrated. The importance of stromal cells in the formation of stem epithelial cells’ niche in many ways relating to tolerogenic activity of stromal elements is emphasized. The secretion profile of stromal cells, its regulation and importance for reparative processes in case of chronic inflammation of intestine are discussed on the example of fibroblasts/miofibroblasts. The conclusion is made that intestinal cells of stroma can be used for treatment of chronic inflammatory diseases of intestine which are resistant to common and cytokine therapy.

作者简介

I. Mayanskaiya

The Nizhny Novgorod research institute of children gastroenterology of Minzdrav of Russia

Email: Mayansky37@mail.ru

P. Potekhin

The Nizhny Novgorod research institute of children gastroenterology of Minzdrav of Russia

V. Ashkenazi

The Nizhny Novgorod research institute of children gastroenterology of Minzdrav of Russia

N. Tolkatcheva

The Nizhny Novgorod research institute of children gastroenterology of Minzdrav of Russia

A. Goganova

The Nizhny Novgorod research institute of children gastroenterology of Minzdrav of Russia

参考

  1. Баринов Э.Ф., Сулаева О.Н. Гастроинтестинальные миофибробласты - роль в регуляции физиологической активности и репарации желудочно-кишечного тракта. Российский журнал гастроэнетрологии, гепатологии, колопроктологии. 2010; 20 (3): 9-18.
  2. Базо И.Я., Деев Р.В., Пинаев Г.П. "Фибробласт" - специализированная клетка или функциональное состояние клеток мезенхимального происхождения. Цитология. 2010; 52 (2): 99-109.
  3. Бобро Л.П. Фибробласты и их значение в тканевых реакциях. Архив патологии. 1990; 52 (12): 65-8.
  4. Буеверов А.О., Ивашкин В.Т. Перспективы и проблемы применения стволовых клеток в гастроэнтерологии. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2011; 21 (6): 4-11.
  5. Князев О.В., Коноплянников А.Г., Лазебник Л.Б., Румянцев В.Г. Перспектива использования мезенхимальных стволовых клеток у больных с патологией органов пищеварения. Экспериментальная и клиническая гастроэнтерология. 2008; (6): 64-78.
  6. Лазебник Л.Б., Князев О.В., Парфенов А.И. и др. Успешное применение аллогенных мезенхимальных стволовых клеток у больного с язвенным колитом. Экспериментальная и клиническая гастроэнтерология. 2009; 4: 112-5.
  7. Лазебник Л.Б. Биологическая терапия болезней органов пишеварения. Терапевтический архив. 2011; 83 (2): 5-8.
  8. Лазебник Л.Б., Коноплянников А.Г., Князев О.В. и др. Использование аллогенных мезенхимальных стромальных клеток костно-мозгового происхождения в лечении воспалительных заболеваний кишечника. Терапевтический архив. 2010; 82 (2): 38-43.
  9. Маянский Д.Н. Лекции по клинической патологии. М.: ГЭОТАР-Медиа; 2008.
  10. Омельяненко Н.П., Слуцкий Л.И. Соединительная ткань (гистофизиология и биохимия). М.: Известия; 2009.
  11. Серов В.В., Шехтер А.Б. Соединительная ткань. М.: Медицина; 1981.
  12. Фриденштейн А.Я., Гайлахян Р.К., Лалыкина К.С. О фибробластподобных клетках в культурах кроветворных тканей морских свинок. Цитология. 1970; 12: 1147-55.
  13. Юдинцева Н.М., Блинова М.И., Панаев Г.П. Особенности организации цитоскелета у фибробластов нормальной, рубцовой и эмбриональной кожи человека, распластанных на белках внеклеточного матрикса, Цитология. 2008; 50 (10): 861-7.
  14. Ярыгин В.Н. Тканевые клеточные системы - основа биомедицинских клеточных технологий нового поколения: контуры идеологии. Вестник РАМН. 2004; 9: 12-9.
  15. Beck P.L., Rosenberg I.M., Xavier RJ. et al. Transforming growth factor-beta mediates intestinal healing and susceptibility to injury in vitro and in vivo through epithelial cells. Am. J. Pathol. 2003; 162: 597-608.
  16. Bergers G., Song S. The role of pericytes in blood - vessel formation and maintenance. Neuro-Oncol. 2005; 7: 452-64.
  17. Brandtzaeg P. "ABC" of mucosal immunology. Nestle Nutr. Workshop Ser. Pediatr. Program. 2009; 178: 8097-106.
  18. Brittan M., Wright N.A. Stem cell in gastrointestinal structure and neoplastic development. Gut. 2004; 53: 899-910.
  19. Caplan A.I. Mesenchymal stem cells. J. Orthop.Res. 1991; 9: 641-50.
  20. Chang H.Y., Chi Jen-Tsan, Dudoit S. et al. Diversity, topographic differentiation and position memory in human fibroblasts. Proc. Natl. Acad. Sci. USA. 2002; 99 (20): 12877-82.
  21. De Wever O., Demetter P., Mareel M., Bracke M. Stromal myofibroblasts are drivers of invasive cancer growth. Int. J. Cancer. 2008; 123: 2229-38.
  22. Denning T.L., Wang Y.-C., Patel S.R. et al. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat. Immunol. 2007; 8: 1086-94.
  23. Douglass A., Wallace K., Koruth M. et al. Targeting liver myofibroblasts: a novel approach in antifibrogenic therapy. Hepatol. Int. 2008; 2: 405-15.
  24. Emura M., Ochiai A., Horino M. еt al. Development of myofibroblasts from human bone marrow mesenchymal stem cells cocultured with human colon carcinoma cells and TGF beta 1. In Vitro Cell Dev. Biol. Anim. 2000; 36: 77-80.
  25. Fiocci C., Ina K., Danese S., Leite A. et al. Alteration of mesenchymal and endothelial cells in inflammatory bowel diseases. Adv. Exp. Biol. 2006; 579: 168-76.
  26. Furuya S., Furuya K. Subepithelial fibroblasts in intestinal villi: roles in intercellular communication. Int. Rev. Cytol. 2007; 264: 165-223.
  27. Haniffa M.A., Wang X.N., Holtick U. et al. Adult human fibroblasts are potent immunoregulatory cells and functionally equivalent to mesenchymal stem cells. J. Immunol. 2007; 179: 1595-604.
  28. Kolodsick J.E., Peters-Golden M., Larios J. et al. Prostaglandin E2 inhibits fibroblast to myofibroblast transition via E-prostanoid receptor 2 signaling and cyclic adenosine monophosphate elevation. Am. J. Respir. Cell Mol. Biol. 2003; 29: 537-44.
  29. Krueger M., Bechman I. CNS pericytes: concepts, misconception, and a way out. Glia. 2010; 58: 1-10.
  30. Lansoni G., Roda G., Belluzzi A. et al. Inflammatory bowel disease: moving toward a stem cell-based therapy. World J. Gastroenterol. 2008; 14 (29): 4616-26.
  31. Maby E.L. Hajjami H., Ame-Thomas P., Pangault C. et al. Functional alteration of the lymphoma stromal cell niche by the cytokine context: role of indoleamine-2,3 dioxygenase. Cancer Res. - 2009; 69: 3228-37.
  32. McRaig B.C., Hughes K., Tighe P.J., Mahida Y.R. Differential expression of TGF-P isoforms by normal and inflammatory bowel diseases intestinal myofibroblasts. Am. J. Physiol. Cell Physiol. 2002; 282: 172-83.
  33. Medzhitov R., Janeway C.Jr. The Toll-receptor family and microbial recognition. Trends Microbiol. 2000; 8: 452-6.
  34. Mifflin R.C., Pinchuk I.V., Saada J.I., Powell D.W. Intestinal myofibroblasts: targets for stem cell therapy. Am. J. Physiol. Gastrointest. Liver Physiol. 2011; 300: 684-96.
  35. Otte J.M., Rosenberg I.M., Podolsky D.K. Intestinal myofibroblasts in innate immune responses of the intestine. Gastroenterology. 2003; 124: 1866-78.
  36. Pinchuk I.V., Beswick E.J., Saada J.I. et al. Monocyte chemoattractant protein-1 production by intestinal myofibroblasts in response to staphylococcal enterotoxin A: relevance to staphylococcal enterotoxigenic disease. J. Immunol. 2007; 178: 8097-106.
  37. Pinchuk I.V., Saada J.I., Beswick E.J. et al. PD-1 ligand expression by human colonic myofibroblasts/fibroblasts regulates CD4+ T-cell activity. Gastroenterology. 2008; 135: 1228-37.
  38. Pinchuk I.V., Miffin R.C., Saada J.I., Powell D.W. Intestinal mesenchimal cells. Curr. Gastroenterol. Rep. 2010; 12: 310-8.
  39. Powell D.W., Miffin R.C., Valentich J.D. et al. Myofibroblasts. II. Intestinal subepithelial myofibroblasts. Am. J. Physiol. Cell Physiol. 1999; 277: 183-201.
  40. Powell D.W., Pinchuk I.V., Saada J.I. et al. Mesenchimal cells of the intestinal lamina propria. Annu. Rev. Physiol. 2011; 73: 213-37.
  41. Saada J.I., Barrera C.A., Adegboyega P.A. et al. Primary isolated human colonic myofibroblasts express B7 family ligands that regulate effector and memory T cells. Gastroenterology. 2004; 125: Р. 424.
  42. Saada J.I., Pinchuk I.V., Barrera C.A. et al. Subepithelial myofibroblasts are novel nonprofessional APCs in the human colonic mucosa. J. Immunol. 2006; 177: 5968-79.
  43. Sipos F., Valcz G., Molnar B. Physiological and pathological role of local and immigrating colonic stem cells. World J. Gastroenterol. 2012; 18 (4): 295-301.
  44. Valcz G., Krenacs T., Sipos F et al. The role of bone marrow derived mesenchymal stem cells in colonic epithelial regeneration. Patol. Oncol. Res. 2011; 17: 11-6.
  45. Valentich J.D., Popov V., Saada J.I., Powell D.W. Phenotypic characterization of an intestinal subepithelial myofibroblasts cell line. Am. J. Physiol. Cell Physiol. 1997; 272: 1513-24.
  46. Vogel J.D., West G.A., Danese S. et al. CD40-mediated immune-non-immune cell interaction induce mucosal fibroblast chemokines leading to T-cell transmigration. Gastroenterology. 2004; 126: 63-80.
  47. Wei Y., Nie Y., Lai J. et al. Comparison of the population capacity of hematopoietic and mesenchymal stem cells in experimental colitis rat model. Transplantation. 2009; 88: 42-8.
  48. Wilm B., Ipenberg A., Hastie N.D., Burch J.B., Bader D.M. The serosal mesothelium is a major source of smooth muscle cells of the gut vasculature. Development. 2005; 132: 5317-28.
  49. Wilson A., Trumpp A. Bone-marrow haematopoietic - stem-cell niches. Nat. Rev. Immunol. 2006; 6: 93-106.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2013


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».