Experimental study on the effects of a novel bone graft material based on poly(3-hydroxybutyrate) and simvastatin on bone formation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: In surgical dentistry and maxillofacial surgery, no currently available bone graft material reliably provides predictable outcomes for the treatment of jawbone defects. Given the increasing number of patients with alveolar bone atrophy and post-traumatic jaw defects, the development of new materials with osteoinductive properties remains highly relevant, underscoring the importance of research in bone tissue engineering.

AIM: To assess the osteoinductive potential of a novel bone graft material based on poly(3-hydroxybutyrate) loaded with simvastatin in an in vivo sheep model.

METHODS: A single-center, prospective, comparative study was conducted between December 2022 and June 2023, involving 24 healthy sheep weighing 65–70 kg and aged 18–24 months. Strict inclusion and exclusion criteria ensured group homogeneity. Under general and local anesthesia, a lateral window approach to the maxillary sinus was performed to create a bony window for implantation. Group 1 received simvastatin-loaded poly(3-hydroxybutyrate) granules; group 2 received the same material without simvastatin. The primary outcome was the presence of morphological signs of osteoinduction, including the formation of new bone tissue. Secondary outcomes included morphometric assessment of structural bone parameters, such as the relative volume of newly formed bone and osteogenic activity.

RESULTS: Assessments were performed at 3 and 6 months post-implantation. At 3 months, granules of the bone graft material in group 1 were surrounded by moderate connective tissue and multiple foci of active osteogenesis around the simvastatin-loaded granules. In group 2, connective tissue predominated around the implanted granules, with isolated osteogenic foci. At 6 months, group 1 exhibited reduced connective tissue, persistent osteogenic foci, and predominantly mature lamellar bone. Histomorphometric analysis revealed that the relative volume of newly formed bone in the simvastatin group was 34.5% at 3 months and 63.4% at 6 months, significantly exceeding that of the control group (21.4 and 36.8%, respectively).

CONCLUSION: Simvastatin-loaded poly(3-hydroxybutyrate) granules significantly enhance bone formation. However, the long-term effects of simvastatin application require further investigation.

About the authors

Karina M. Salekh

Peoples' Friendship University of Russia

Author for correspondence.
Email: ms.s.karina@mail.ru
ORCID iD: 0000-0003-4415-766X
SPIN-code: 1798-1439
Russian Federation, Moscow

Alexey V. Volkov

Peoples' Friendship University of Russia

Email: volkov-av@rudn.ru
ORCID iD: 0000-0002-5611-3990
SPIN-code: 1126-1347

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Alexander A. Muraev

Peoples' Friendship University of Russia

Email: muraev_aa@pfur.ru
ORCID iD: 0000-0003-3982-5512
SPIN-code: 1431-5936

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Anton P. Bonartsev

Lomonosov Moscow State University; Fundamentals of Biotechnology Federal Research Centre of the Russian Academy of Sciences

Email: ant_bonar@mail.ru
ORCID iD: 0000-0001-5894-9524
SPIN-code: 1688-2226

Dr. Sci. (Biology), Associate Professor

Russian Federation, Moscow; Moscow

Vera V. Voinova

Lomonosov Moscow State University

Email: veravoinova@mail.ru
ORCID iD: 0000-0002-0253-6461
SPIN-code: 6293-0462

Cand. Sci. (Biology)

Russian Federation, Moscow

Alexander B. Dymnikov

Peoples’ Friendship University of Russia

Email: dymnikov_ab@pfur.ru
ORCID iD: 0000-0001-8980-6235
SPIN-code: 7254-4306

MD, Cand. Sci. (Medicine), Associate Professor

Russian Federation, Moscow

Alexander A. Dolgalev

Stavropol State Medical University

Email: dolgalev@dolgalev.pro
ORCID iD: 0000-0002-6352-6750
SPIN-code: 5941-5771

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Stavropol

Sergey Yu. Ivanov

Peoples’ Friendship University of Russia; Sechenov First Moscow State Medical University

Email: syivanov@yandex.ru
ORCID iD: 0000-0001-5458-0192
SPIN-code: 2607-2679

MD, Dr. Sci. (Medicine), Professor, Corresponding Member of the Russian Academy of Sciences

Russian Federation, Moscow; Moscow

References

  1. Xue N, Ding X, Huang R, et al. Bone tissue engineering in the treatment of bone defects. Pharmaceuticals (Basel). 2022;15(7):879. doi: 10.3390/ph15070879 EDN: XSCCJQ
  2. Migliorini F, La Padula G, Torsiello E, et al. Strategies for large bone defect reconstruction after trauma, infections or tumour excision: a comprehensive review of the literature. Eur J Med Res. 2021;26(1):118. doi: 10.1186/s40001-021-00593-9 EDN: ISWTSA
  3. Abbas M, Alqahtani MS, Alhifzi R. Recent developments in polymer nanocomposites for bone regeneration. Int J Mol Sci. 2023;24(4):3312. doi: 10.3390/ijms24043312 EDN: AMDKCU
  4. Saberian E, Jenča A, Zafari Y, et al. Scaffold application for bone regeneration with stem cells in dentistry: literature review. Cells. 2024;13(12):1065. doi: 10.3390/cells13121065 EDN: AKFWSK
  5. Kobozev MI, Balandina MA, Semenova YuA, et al. The use of osteoplastic material, containing vascular endothelial growth factor, in case of socket preservation. The Journal of Scientific Articles Health and Education Millennium. 2016;18(1):116–122. EDN: VPUHXD
  6. Aleynik DY, Bokov AE, Charykova IN, et al. Functionalization of osteoplastic material with human placental growth factor and assessment of biocompatibility of the resulting material in vitro. Pharmaceutics. 2024;16(1):85. doi: 10.3390/pharmaceutics16010085 EDN: IAGLTO
  7. Venkatesan N, Liyanage ADT, Castro-Núñez J, et al. Biodegradable polymerized simvastatin stimulates bone formation. Acta Biomater. 2019;93:192–199. doi: 10.1016/j.actbio.2019.04.059
  8. Wu T, Sun J, Tan L, et al. Enhanced osteogenesis and therapy of osteoporosis using simvastatin loaded hybrid system. Bioact Mater. 2020;5(2):348–357. doi: 10.1016/j.bioactmat.2020.03.004 EDN: DLTJMM
  9. Granat MM, Eifler-Zydel J, Kolmas J. Statins-their role in bone tissue metabolism and local applications with different carriers. Int J Mol Sci. 2024;25(4):2378. doi: 10.3390/ijms25042378 EDN: WWCWHI
  10. Masaeli R, Jafarzadeh Kashi TS, Dinarvand R, et al. Efficacy of the biomaterials 3wt%-nanostrontium-hydroxyapatite-enhanced calcium phosphate cement (nanoSr-CPC) and nanoSr-CPC-incorporated simvastatin-loaded poly(lactic-co-glycolic-acid) microspheres in osteogenesis improvement: An explorative multi-phase experimental in vitro/vivo study. Mater Sci Eng C Mater Biol Appl. 2016;69:171–183. doi: 10.1016/j.msec.2016.06.033 EDN: WOUWCT
  11. Zahedipour F, Butler AE, Rizzo M, Sahebkar A. Statins and angiogenesis in non-cardiovascular diseases. Drug Discov Today. 2022;27(10):103320. doi: 10.1016/j.drudis.2022.07.005 EDN: LWYRGW
  12. Salekh KM, Muraev AA, Dolgalev AA, et al. Efficacy of poly-3-hydroxybutyrate enriched with simvastatin in bone regeneration after tooth extraction (experimental study). Modern Technologies in Medicine. 2024;16(5):27–34. doi: 10.17691/stm2024.16.5.03
  13. Ghassemi T, Shahroodi A, Ebrahimzadeh MH, et al. Current concepts in scaffolding for bone tissue engineering. Arch Bone Jt Surg. 2018;6(2):90–99.
  14. Bharadwaz A, Jayasuriya AC. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2020;110:110698. doi: 10.1016/j.msec.2020.110698 EDN: XRCKMB
  15. Alonzo M, Primo FA, Kumar SA, et. al. Bone tissue engineering techniques, advances and scaffolds for treatment of bone defects. Curr Opin Biomed Eng. 2021;17:100248. doi: 10.1016/j.cobme.2020.100248 EDN: FSWGDC
  16. Alsawah GM, Al-Obaida MI, Al-Madi EM. Effect of a simvastatin-impregnated chitosan scaffold on cell growth and osteoblastic differentiation. Applied Sciences (Switzerland). 2021;11(12):5346. doi: 10.3390/app11125346 EDN: BHIIQX
  17. Delan WK, Ali IH, Zakaria M, et al. Investigating the bone regeneration activity of PVA nanofibers scaffolds loaded with simvastatin/chitosan nanoparticles in an induced bone defect rabbit model. Int J Biol Macromol. 2022;222(Pt B):2399–2413. doi: 10.1016/j.ijbiomac.2022.10.026 EDN: YSOLJW
  18. Olkhov AA, Muraev AA, Volkov AV. Structure and properties of bioresorbed materials based on polylactide for regenerative medicine. All Materials. Encyclopaedic Reference Manual. 2021;(1):7–15. doi: 10.31044/1994-6260-2021-0-1-7-15
  19. Bonartsev AP, Bonartseva GA, Reshetov IV, et al. Application of polyhydroxyalkanoates in medicine and the biological activity of natural poly(3-hydroxybutyrate). Acta Naturae. 2019;11(2):4–16. doi: 10.32607/20758251-2019-11-2-4-16 EDN: HQISMC
  20. Bonartsev AP, Voinova VV, Volkov AV. Scaffolds based on poly(3-hydroxybutyrate) and its copolymers for bone tissue engineering (review). Modern Technologies in Medicine. 2022;18(5):78–91. doi: 10.17691/stm2022.14.5.07 EDN: WXKFER
  21. Ni Q, Zhu J, Li Z, et al. Simvastatin promotes rat Achilles tendon-bone interface healing by promoting osteogenesis and chondrogenic differentiation of stem cells. Cell Tissue Res. 2023;391(2):339–355. doi: 10.1007/s00441-022-03714-w EDN: XSXKCG

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Bone regenerate from the floor of the maxillary sinus containing rounded granules of osteoplastic material around which both immature (reticulofibrous) and mature (lamellar) bone tissue is formed in the presence of simvastatin (a); without simvastatin inclusion, predominantly immature bone tissue (b). Haematoxylin and eosin staining.

Download (1MB)
3. Fig. 2. Bone regenerate from the floor of the maxillary sinus containing rounded granules of osteoplastic material around which mature (lamellar) bone tissue forms in the presence of simvastatin occupies a larger regenerate space around the material (a); without simvastatin inclusion, a small amount of predominantly lamellar bone tissue (b). Haematoxylin and eosin staining.

Download (1MB)

Copyright (c) 2025 Eco-Vector


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».