Artificial intelligence systems for predicting chronic ischemic heart disease outcomes in cardiac surgery patients based on presence of anemia: a literature review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: In Russia, the number of people undergoing heart surgery exceeds 600 thousand annually. These include anemia in 30–70% of patients with a 4-fold increased risk of one-year death, a 5-fold increased risk of stent thrombosis, a 1.3-fold increased risk of recurrent acute coronary events, and a 2-fold increased risk of bleeding. However, among the prognostic systems developed using artificial intelligence (AI) technologies, few take the presence of anemia into account. Existing digital platforms are not designed to support clinical decision making.

AIM: The review aimed to evaluate existing AI platforms for predicting the course of ischemic heart disease (IHD) and systems that take into account the presence of anemia.

MATERIALS AND METHOD: The PubMed and Russian Science Citation Index databases from 2000 to January 2024 were analyzed. Using Keywords of “artificial intelligence”, “anemia”, “coronary heart disease”, “hemoglobin”, and “cardiac surgery”, 906 articles were found, of which 38 met the inclusion criteria for analysis.

RESULTS: In some countries, AI platforms have been created to predict the course of IHD. This review analyzes published data on the development and use of AI-based digital products for the management of patients with IHD, including those that take into account key hemodynamic parameters.

CONCLUSION: Analysis of existing developments revealed a focus on solving prognostic problems. However, in our opinion, the range of parameters analyzed is not wide enough. For example, anemia, which plays a key role in modifying the risk of adverse outcomes in IHD, has not been considered as a factor.

About the authors

Tatyana Y. Kalyuta

Saratov State Medical University named after V.I. Razumovsky

Author for correspondence.
Email: tatianakaluta@yandex.ru
ORCID iD: 0000-0003-3172-0804
SPIN-code: 4982-7861

MD, Cand. Sci. (Medicine)

Russian Federation, Saratov

Irina P. Emelyanova

Saratov State Medical University named after V.I. Razumovsky

Email: irisha-9966@mail.ru
ORCID iD: 0000-0002-4178-9437
SPIN-code: 1766-8528
Russian Federation, Saratov

Valeriy V. Suvorov

Saratov State Medical University named after V.I. Razumovsky

Email: valeriy_s@inbox.ru
ORCID iD: 0000-0002-4181-9034
SPIN-code: 4757-5250

Cand. Sci. (History)

Russian Federation, Saratov

Alexander S. Fedonnikov

Saratov State Medical University named after V.I. Razumovsky

Email: fedonnikov@mail.ru
ORCID iD: 0000-0003-0344-4419
SPIN-code: 2248-5246

MD, Dr. Sci. (Medicine)

Russian Federation, Saratov

References

  1. Kontsevaya AN, Drapkina OM, Balanova YuA, et al. Economic burden of cardiovascular diseases in the russian federation in 2016. Rational Pharmacotherapy in Cardiology. 2018;14(2):156–166. EDN: XNSQUP doi: 10.20996/1819-6446-201814-2-156-166
  2. Lanser L, Fuchs D, Scharnagl H, et al. Anemia of chronic disease in patients with cardiovascular disease. Front Cardiovasc Med. 2021;8:666638. doi: 10.3389/fcvm.2021.666638
  3. Kalyuta TYu, Glushakova VD, Glushakov IA, et al. Anemia and acute coronary syndromes: epidemiology, etiology, prognostic value and bleeding risks. Challenges in Modern Medicine. 2022;45(4):325–342. EDN: UNCZUF doi: 10.52575/2687-0940-2022-45-4-325-342
  4. Wang H, Zu Q, Chen J, et al. Application of artificial intelligence in acute coronary syndrome: a brief literature review. Adv Ther. 2021;38(10):5078–5086. doi: 10.1007/s12325-021-01908-2
  5. Kulkarni H, Amin AP. Artificial intelligence in percutaneous coronary intervention: improved prediction of PCI-related complications using an artificial neural network. medRxiv. 2020. doi: 10.1101/2020.08.17.20177055
  6. Noh YK, Park JY, Choi BG, et al. A machine learning-based approach for the prediction of acute coronary syndrome requiring revascularization. J Med Syst. 2019;43(8):253. doi: 10.1007/s10916-019-1359-5
  7. Zack CJ, Senecal C, Kinar Y, et al. Leveraging machine learning techniques to forecast patient prognosis after percutaneous coronary intervention. JACC Cardiovasc Interv. 2019;12(14):1304–1311. doi: 10.1016/j.jcin.2019.02.035
  8. Pinaire J, Chabert E, Azé J, et al. Sequential pattern mining to predict medical in-hospital mortality from administrative data: application to acute coronary syndrome. J Healthc Eng. 2021;2021:5531807. doi: 10.1155/2021/5531807
  9. Berikol GB, Yildiz O, Özcan IT. Diagnosis of acute coronary syndrome with a support vector machine. J Med Syst. 2016;40(4):84. doi: 10.1007/s10916-016-0432-6
  10. Than MP, Pickering JW, Sandoval Y, et al. Machine learning to predict the likelihood of acute myocardial infarction. Circulation. 2019;140(11):899–909. doi: 10.1161/CIRCULATIONAHA.119.041980
  11. Wu CC, Hsu WD, Islam MM, et al. An artificial intelligence approach to early predict non-ST-elevation myocardial infarction patients with chest pain. Comput Methods Programs Biomed. 2019;173:109–117. doi: 10.1016/j.cmpb.2019.01.013
  12. Baxt WG, Shofer FS, Sites FD, et al. A neural network aid for the early diagnosis of cardiac ischemia in patients presenting to the emergency department with chest pain. Ann Emerg Med. 2002;40(6):575–583. doi: 10.1067/mem.2002.129171
  13. Hadanny A, Shouval R, Wu J, et al. Predicting 30-day mortality after ST elevation myocardial infarction: Machine learning- based random forest and its external validation using two independent nationwide datasets. J Cardiol. 2021;78(5):439–446. doi: 10.1016/j.jjcc.2021.06.002
  14. Sherazi SWA, Bae JW, Lee JY. A soft voting ensemble classifier for early prediction and diagnosis of occurrences of major adverse cardiovascular events for STEMI and NSTEMI during 2-year follow-up in patients with acute coronary syndrome. PLoS One. 2021;16(6):e0249338. doi: 10.1371/journal.pone.0249338
  15. Zeron RMC, Serrano Junior CV. Artificial intelligence in the diagnosis of cardiovascular disease. Rev Assoc Med Bras (1992). 2019;65(12):1438–1441. doi: 10.1590/1806-9282.65.12.1438
  16. Gruson D, Bernardini S, Dabla PK, et al. Collaborative AI and laboratory medicine integration in precision cardiovascular medicine. Clin Chim Acta. 2020;509:67–71. doi: 10.1016/j.cca.2020.06.001
  17. Fominykh AM. A complex for automatic diagnostics of cardiovascular activity based on an artificial intelligence system. Fundamental'nye i prikladnye issledovaniya: problemy i rezul'taty. 2013;(3):54–58. (In Russ.) EDN: RDMQSX
  18. Geltser BI, Rublev VYu, Tsivanyuk MM, Shakhgeldyan KI. Machine learning in predicting immediate and long-term outcomes of myocardial revascularization: a systematic review. Russian Journal of Cardiology. 2021;26(8):115–124. EDN: PVUHFE doi: 10.15829/1560-4071-2021-4505
  19. Johnson KW, Torres Soto J, Glicksberg BS, et al. Artificial intelligence in cardiology. J Am Coll Cardiol. 2018;71(23):2668–2679. doi: 10.1016/j.jacc.2018.03.521
  20. Johnson AE, Brewer LC, Echols MR, et al. Utilizing artificial intelligence to enhance health equity among patients with heart failure. Heart Fail Clin. 2022;18(2):259–273. doi: 10.1016/j.hfc.2021.11.001
  21. Pieszko K, Hiczkiewicz J, Budzianowski P, et al. Machine-learned models using hematological inflammation markers in the prediction of short-term acute coronary syndrome outcomes. J Transl Med. 2018;16(1):334. doi: 10.1186/s12967-018-1702-5
  22. Duan H, Sun Z, Dong W, Huang Z. Utilizing dynamic treatment information for MACE prediction of acute coronary syndrome. BMC Med Inform Decis Mak. 2019;19(1):5. doi: 10.1186/s12911-018-0730-7
  23. Ma M, Hao X, Zhao J, et al. Predicting heart failure in-hospital mortality by integrating longitudinal and category data in electronic health records. Med Biol Eng Comput. 2023;61(7):1857–1873. doi: 10.1007/s11517-023-02816-z
  24. Ohara T, Ikeda H, Sugitani Y, et al. Artificial intelligence supported anemia control system (AISACS) to prevent anemia in maintenance hemodialysis patients. Int J Med Sci. 2021;18(8):1831–1839. doi: 10.7150/ijms.53298
  25. D'Ascenzo F, De Filippo O, Gallone G, et al. Machine learning-based prediction of adverse events following an acute coronary syndrome (PRAISE): a modelling study of pooled datasets. Lancet. 2021;397(10270):199–207. doi: 10.1016/S0140-6736(20)32519-8
  26. Laumer F, Di Vece D, Cammann VL, et al. Assessment of artificial intelligence in echocardiography diagnostics in differentiating takotsubo syndrome from myocardial infarction. JAMA Cardiol. 2022;7(5):494–503. doi: 10.1001/jamacardio.2022.0183
  27. Chan PZ, Ramli MAIB, Chew HSJ. Diagnostic test accuracy of artificial intelligence-assisted detection of acute coronary syndrome: a systematic review and meta-analysis. Comput Biol Med. 2023;167:107636. doi: 10.1016/j.compbiomed.2023.107636
  28. Kumar S, Chu M, Tu S, et al. Physiologic and compositional coronary artery disease extension in patients with takotsubo syndrome assessed using artificial intelligence: an optical coherence tomography study. Coron Artery Dis. 2022;33(5):349–353. doi: 10.1097/MCA.0000000000001130
  29. Hong H, Zeng M, et al. Risk stratification in acute coronary syndrome by comprehensive morphofunctional assessment with optical coherence tomography. JACC Asia. 2022;2(4):460–472. doi: 10.1016/j.jacasi.2022.03.004
  30. Thießen N, Schnabel R. Diagnosis of acute coronary syndrome. Dtsch Med Wochenschr. 2024;149(9):488–495. (In Germany). doi: 10.1055/a-2163-2586
  31. Emakhu J, Monplaisir L, Aguwa C, et al. Acute coronary syndrome prediction in emergency care: A machine learning approach. Comput Methods Programs Biomed. 2022;225:107080. doi: 10.1016/j.cmpb.2022.107080
  32. Glessgen CG, Boulougouri M, Vallée JP, et al. Artificial intelligence-based opportunistic detection of coronary artery stenosis on aortic computed tomography angiography in emergency department patients with acute chest pain. Eur Heart J Open. 2023;3(5):oead088. doi: 10.1093/ehjopen/oead088
  33. Chopannejad S, Sadoughi F, Bagherzadeh R, Shekarchi S. Predicting major adverse cardiovascular events in acute coronary syndrome: a scoping review of machine learning approaches. Appl Clin Inform. 2022;13(3):720–740. doi: 10.1055/a-1863-1589
  34. Kayvanpour E, Gi WT, Sedaghat-Hamedani F, et al. microRNA neural networks improve diagnosis of acute coronary syndrome (ACS). J Mol Cell Cardiol. 2021;151:155–162. doi: 10.1016/j.yjmcc.2020.04.014
  35. Park J, Yoon Y, Cho Y, Kim J. Feasibility of artificial intelligence-based electrocardiography analysis for the prediction of obstructive coronary artery disease in patients with stable angina: validation study. JMIR Cardio. 2023;7:e44791. doi: 10.2196/44791
  36. Kumar S, Chu M, Sans-Roselló J, et al. In-hospital heart failure in patients with takotsubo cardiomyopathy due to coronary artery disease: an artificial intelligence and optical coherence tomography study. Cardiovasc Revasc Med. 2023;47:40–45. doi: 10.1016/j.carrev.2022.09.010
  37. Wang Y, Chen H, Sun T, et al. Risk predicting for acute coronary syndrome based on machine learning model with kinetic plaque features from serial coronary computed tomography angiography. Eur Heart J Cardiovasc Imaging. 2022;23(6):800–810. doi: 10.1093/ehjci/jeab101
  38. Li R, Shen L, Ma W, et al. Use of machine learning models to predict in-hospital mortality in patients with acute coronary syndrome. Clin Cardiol. 2023;46(2):184–194. doi: 10.1002/clc.23957
  39. Boeddinghaus J, Doudesis D, Lopez-Ayala P, et al. Machine learning for myocardial infarction compared with guideline-recommended diagnostic pathways. Circulation. 2024;149(14):1090–1101. doi: 10.1161/CIRCULATIONAHA.123.066917
  40. Jing M, Xi H, Sun J, et al. Differentiation of acute coronary syndrome with radiomics of pericoronary adipose tissue. Br J Radiol. 2024;97(1156):850–858. doi: 10.1093/bjr/tqae032
  41. Herman R, Meyers HP, Smith SW, et al. International evaluation of an artificial intelligence-powered electrocardiogram model detecting acute coronary occlusion myocardial infarction. Eur Heart J Digit Health. 2023;5(2):123–133. doi: 10.1093/ehjdh/ztad074

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Appendix 1. Analysis of interpreted and predicted parameters in publications on developed artificial intelligence systems.
Download (30KB)
3. Appendix 2. The frequency of use of indicators included in the data interpreted by the authors of the articles
Download (20KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».