Immunology of post-COVID syndrome

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

COVID-19, the disease caused by SARS-CoV-2, has diverse long-term consequences of varying severity after recovery from the acute phase. As survivorship and therefore the number of individuals with “long COVID” continue to increase, the prevalence, origins, and mechanisms of post-acute sequelae manifestation must be critically elucidated. The inappropriate and unique inflammatory response in the acute phase of COVID-19 causes severe respiratory symptoms, which can be subsequently accompanied by multiple-organ damage, affecting the brain, heart, kidneys, etc. This review examines the role of an unregulated antigen-specific immune response to COVID-19 in the onset and development of its consequences. We discuss the potential role of virus persistence in tissue reservoirs, unresolved inflammation, cytokine hyperproduction, tissue damage, and molecular mimicry and autoimmunity in the pathogenesis of post-COVID syndrome — the induction and maintenance of imbalanced immune responses after the resolution of acute COVID-19.

作者简介

Sergey Sсherbak

Saint-Petersburg City Hospital № 40 of Kurortny District; St Petersburg University

Email: b40@zdrav.spb.ru
ORCID iD: 0000-0001-5036-1259
SPIN 代码: 1537-9822

MD, Dr. Sci. (Med.), professor

俄罗斯联邦, Saint Petersburg; Saint Petersburg

Andrey Sarana

St Petersburg University; Health Committee of Saint Petersburg

Email: asarana@mail.ru
ORCID iD: 0000-0003-3198-8990
SPIN 代码: 7922-2751

MD, Cand. Sci. (Med.), associate professor

俄罗斯联邦, Saint Petersburg; Saint Petersburg

Dmitry Vologzhanin

Saint-Petersburg City Hospital № 40 of Kurortny District; St Petersburg University

Email: volog@bk.ru
ORCID iD: 0000-0002-1176-794X
SPIN 代码: 7922-7302

MD, Dr. Sci. (Med.)

俄罗斯联邦, Saint Petersburg; Saint Petersburg

Tatyana Kamilova

Saint-Petersburg City Hospital № 40 of Kurortny District

Email: kamilovaspb@mail.ru
ORCID iD: 0000-0001-6360-132X
SPIN 代码: 2922-4404

Cand. Sci. (Biol.)

俄罗斯联邦, Saint Petersburg

Aleksandr Golota

Saint-Petersburg City Hospital № 40 of Kurortny District

编辑信件的主要联系方式.
Email: golotaa@yahoo.com
ORCID iD: 0000-0002-5632-3963
SPIN 代码: 7234-7870

MD, Cand. Sci. (Med.), associate professor

俄罗斯联邦, 9B, Borisova street, 197706, Sestroretsk, Saint Petersburg

Stanislav Makarenko

Saint-Petersburg City Hospital № 40 of Kurortny District; St Petersburg University

Email: st.makarenko@gmail.com
ORCID iD: 0000-0002-1595-6668
SPIN 代码: 8114-3984
俄罗斯联邦, Saint Petersburg; Saint Petersburg

参考

  1. Newell KL, Waickman AT. Inflammation, immunity, and antigen persistence in post-acute sequelae of SARS-CoV-2 infectionImmunity and inflammaion in post-acute sequelae of SARS-CoV-2 infection. Curr Opin Immunol. 2022;77:102228. doi: 10.1016/j.coi.2022.102228
  2. Choutka J, Jansari V, Hornig M, Iwasaki A. Unexplained post-acute infection syndromes. Nat Med. 2022;28(5):911–923. doi: 10.1038/s41591-022-01810-6
  3. Davis HE, McCorkell L, Moore Vogel J, Topol EJ. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023;13:1–14. doi: 10.1038/s41579-022-00846-2
  4. Al-Aly Z, Xie Y, Bowe B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature. 2021;594(7862):259–264. doi: 10.1038/s41586-021-03553-9
  5. Soriano JB, Murthy S, Marshall JC, et al. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect Dis. 2022;22(4):e102–e107. doi: 10.1016/S1473-3099(21)00703-9
  6. Phetsouphanh C, Darley DR, Wilson DB, et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat Immunol. 2022;23(2):210–216. doi: 10.1038/s41590-021-01113-x
  7. Chun HJ, Coutavas E, Pine AB, et al. Immunofibrotic drivers of impaired lung function in postacute sequelae of SARS-CoV-2 infection. JCI Insight. 2021;6(14):e148476. doi: 10.1172/jci.insight.148476
  8. Chioh FW, Fong SW, Young BE, et al. Convalescent COVID-19 patients are susceptible to endothelial dysfunction due to persistent immune activation. Elife. 2021;10:e64909. doi: 10.7554/eLife.64909
  9. Proal AD, VanElzakker MB. Long COVID or post-acute sequelae of COVID-19 (PASC): an overview of biological factors that may contribute to persistent symptoms. Front Microbiol. 2021;12:698169. doi: 10.3389/fmicb.2021.698169
  10. Leviner S. Recognizing the clinical sequelae of COVID-19 in adults: COVID-19 long-haulers. J Nurse Pract. 2021;17(8):946–949. doi: 10.1016/j.nurpra.2021.05.003
  11. García-Abellán J, Padilla S, Fernández-González M, et al. Antibody response to SARS-CoV-2 is associated with long-term clinical outcome in patients with COVID-19: a longitudinal study. J Clin Immunol. 2021;41(7):1490–1501. doi: 10.1007/s10875-021-01083-7
  12. Augustin M, Schommers P, Stecher M, et al. Post-COVID syndrome in non-hospitalised patients with COVID-19: a longitudinal prospective cohort study. Lancet Reg Health Eur. 2021;6:100122. doi: 10.1016/j.lanepe.2021.100122
  13. Blomberg B, Mohn KG, Brokstad KA, et al. Long COVID in a prospective cohort of home-isolated patients. Nat Med. 2021;27(9):1607–1613. doi: 10.1038/s41591-021-01433-3
  14. Blomberg B, Cox RJ, Langeland N. Long COVID: a growing problem in need of intervention. Cell Rep Med. 2022;3(3):100552. doi: 10.1016/j.xcrm.2022.100552
  15. Pisareva E, Badiou S, Mihalovičová L, et al. Persistence of neutrophil extracellular traps and anticardiolipin auto-antibodies in post-acute phase COVID-19 patients. J Med Virol. 2023;95(1):e28209. doi: 10.1002/jmv.28209
  16. Peluso MJ, Lu S, Tang AF, et al. Markers of immune activation and inflammation in individuals with postacute sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 infection. J Infect Dis. 2021;224(11):1839–1848. doi: 10.1093/infdis/jiab490
  17. Kappelmann N, Dantzer R, Khandaker GM. Interleukin-6 as potential mediator of long-term neuropsychiatric symptoms of COVID-19. Psychoneuroendocrinology. 2021;131:105295. doi: 10.1016/j.psyneuen.2021.105295
  18. Ghazavi A, Ganji A, Keshavarzian N, et al. Cytokine profile and disease severity in patients with COVID-19. Cytokine. 2021;137:155323. doi: 10.1016/j.cyto.2020.155323
  19. Sadeghi A, Tahmasebi S, Mahmood A, et al. Th17 and Treg cells function in SARS-CoV2 patients compared with healthy controls. J Cell Physiol. 2021;236(4):2829–2839. doi: 10.1002/jcp.30047
  20. Su Y, Yuan D, Chen DG, et al. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell. 2022;185(5):881–895.e20. doi: 10.1016/j.cell.2022.01.014
  21. Avolio E, Carrabba M, Milligan R, et al. The SARS-CoV-2 spike protein disrupts human cardiac pericytes function through CD147 receptor-mediated signalling: a potential non-infective mechanism of COVID-19 microvascular disease. Clin Sci (Lond). 2021;135(24): 2667–2689. doi: 10.1042/CS20210735
  22. Lei Y, Zhang J, Schiavon CR, et al. SARS-CoV-2 spike protein impairs endothelial function via downregulation of ACE2. Circ Res. 2021;128(9):1323–1326. doi: 10.1161/CIRCRESAHA.121.318902
  23. DeOre BJ, Tran KA, Andrews AM, et al. SARS-CoV-2 spike protein disrupts blood–brain barrier integrity via RhoA activation. J Neuroimmune Pharmacol. 2021;16(4):722–728. doi: 10.1007/s11481-021-10029-0
  24. Patterson BK, Guevara-Coto J, Yogendra R, et al. Immune-based prediction of COVID-19 severity and chronicity decoded using machine learning. Front Immunol. 2021;12:700782. doi: 10.3389/fimmu.2021.700782
  25. Van Cleemput J, van Snippenberg W, Lambrechts L, et al. Organ-specific genome diversity of replication-competent SARS-CoV-2. Nat Commun. 2021;12(1):6612. doi: 10.1038/s41467-021-26884-7
  26. Stein SR, Ramelli SC, Grazioli A, et al. SARS-CoV-2 infection and persistence throughout the human body and brain at autopsy. Nature. 2022;612(7941):758–763. doi: 10.1038/s41586-022-05542-y
  27. Gaebler C, Wang Z, Lorenzi JCC, et al. Evolution of antibody immunity to SARS-CoV-2. Nature. 2021;591(7851):639–644. doi: 10.1038/s41586-021-03207-w
  28. Liotti FM, Menchinelli G, Marchetti S, et al. Assessment of SARS-CoV-2 RNA test results among patients who recovered from COVID-19 with prior negative results. JAMA Intern Med. 2021;181(5):702–704. doi: 10.1001/jamainternmed.2020.7570
  29. Vibholm LK, Nielsen SSF, Pahus MH, et al. SARS-CoV-2 persistence is associated with antigen-specific CD8 T-cell responses. EBioMedicine. 2021;64:103230. doi: 10.1016/j.ebiom.2021.103230
  30. Tejerina F, Catalan P, Rodriguez-Grande C, et al. Post-COVID-19 syndrome. SARS-CoV-2 RNA detection in plasma, stool, and urine in patients with persistent symptoms after COVID-19. BMC Infect Dis. 2022;22(1):211. doi: 10.1186/s12879-022-07153-4
  31. Goh D, Chun Tatt Lim JCT, Bilbao Fernaíndez SB, et al. Persistence of residual SARS-CoV-2 viral antigen and RNA in tissues of patients with long COVID-19. Front Immunol. 2022;13:1036894. doi: 10.3389/fimmu.2022.939989
  32. Cheung CCL, Goh D, Lim X, et al. Residual SARS-CoV-2 viral antigens detected in GI and hepatic tissues from five recovered patients with COVID-19. Gut. 2022;71(1):226–229. doi: 10.1136/gutjnl-2021-324280
  33. Swank Z, Senussi Y, Manickas-Hill Z, et al. Persistent circulating SARS-CoV-2 spike is associated with post-acute COVID-19 sequelae. Clin Infect Dis. 2023;76(3):e487–e490. doi: 10.1093/cid/ciac722
  34. Natarajan A, Zlitni S, Brooks EF, et al. Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA suggest prolonged gastrointestinal infection. Med (N Y). 2022;3(6):371–387.e9. doi: 10.1016/j.medj.2022.04.001
  35. De Melo GD, Lazarini F, Levallois S, et al. COVID-19-associated olfactory dysfunction reveals SARS-CoV-2 neuroinvasion and persistence in the olfactory system. bioRxiv. 2020 (in press). doi: 10.1101/2020.11.18.388819
  36. Peluso MJ, Deitchman AN, Torres L, et al. Long-term SARS- CoV-2-specific immune and inflammatory responses in individuals recovering from COVID-19 with and without post-acute symptoms. Cell Rep. 2021;36(6):109518. doi: 10.1016/j.celrep.2021.109518
  37. Cheon IS, Li C, Son YM, et al. Immune signatures underlying post-acute COVID-19 lung sequelae. Sci Immunol. 2021;6(65): eabk1741. doi: 10.1126/sciimmunol.abk1741
  38. Kemp SA, Collier DA, Datir RP, et al. SARS-CoV-2 evolution during treatment of chronic infection. Nature. 2021;592(7853): 277–282. doi: 10.1038/s41586-021-03291-y
  39. Choi B, Choudhary MC, Regan J, et al. Persistence and evolution of SARS-CoV-2 in an immunocompromised host. N Engl J Med. 2020;383(23):2291–2293. doi: 10.1056/NEJMc2031364
  40. Clark SA, Clark LE, Pan J, et al. SARS-CoV-2 evolution in an immunocompromised host reveals shared neutralization escape mechanisms. Cell. 2021;184(10):2605–2617.e18. doi: 10.1016/j.cell.2021.03.027
  41. McCallum M, Bassi J, De Marco A, et al. SARS-CoV-2 immune evasion by variant B.1.427/B.1.429. bioRxiv. 2021 (in press). doi: 10.1101/2021.03.31.437925
  42. Motozono C, Toyoda M, Zahradnik J, et al. An emerging SARS-CoV-2 mutant evading cellular immunity and increasing viral infectivity. bioRxiv. 2021 (in press). doi: 10.1101/2021.04.02.438288v1
  43. Planas D, Bruel T, Grzelak L, et al. Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. Nat Med. 2021;27(5):917–924. doi: 10.1038/s41591-021-01318-5
  44. Kumata R, Ito J, Takahashi K, et al. A tissue level atlas of the healthy human virome. BMC Biol. 2020;18(1):55. doi: 10.1186/s12915-020-00785-5
  45. Peluso MJ, Deveau TM, Munter SE, et al. Evidence of recent Epstein-Barr virus reactivation in individuals experiencing long COVID. MedRxiv. 2022 (in press). doi: 10.1101/2022.06.21.22276660
  46. Acharya D, Liu GQ, Gack MU. Dysregulation of type I interferon responses in COVID-19. Nat Rev Immunol. 2020;20(7):397–398. doi: 10.1038/s41577-020-0346-x
  47. Chen T, Song J, Liu H, et al. Positive epstein-barr virus detection in corona virus disease 2019 (COVID-19) patients. Sci Rep. 2021;11(1):10902. doi: 10.1038/s41598-021-90351-y
  48. García-Martínez FJ, Moreno-Artero E, Jahnke S. SARS-CoV-2 and EBV coinfection. Med Clin (Engl Ed). 2020;155(7):319–320. doi: 10.1016/j.medcle.2020.06.010
  49. Xu R, Zhou Y, Cai L, et al. Co-reactivation of the human herpesvirus alpha subfamily (herpes simplex virus-1 and varicella zoster virus) in a critically ill patient with COVID-19. Br J Dermatol. 2020;183(6):1145–1147. doi: 10.1111/bjd.19484
  50. Mahroum N, Elsalti A, Alwani A, et al. The mosaic of autoimmunity — finally discussing in person. The 13th international congress on autoimmunity 2022 (AUTO13) Athens. Autoimmun Rev. 2022;21(10):103166. doi: 10.1016/j.autrev.2022.103166
  51. Mobasheri L, Nasirpour MH, Masoumi E, et al. SARS-CoV-2 triggering autoimmune diseases. Cytokine. 2022;154:155873. doi: 10.1016/j.cyto.2022.155873
  52. Cabral-Marques O. Halpert G, Schimke LF, et al. Autoantibodies targeting GPCRs and RAS-related molecules associate with COVID-19 severity. Nat Commun. 2022;13(1):1220. doi: 10.1038/s41467-022-28905-5
  53. Wang EY, Mao T, Klein J, et al. Diverse functional autoantibodies in patients with COVID-19. Nature. 2021;595(7866):283–288. doi: 10.1038/s41586-021-03631-y
  54. Bastard P, Gervais A, Le Voyer T, et al. Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Sci Immunol. 2021;6(62):eabl4340. doi: 10.1126/sciimmunol.abl4340
  55. Son K, Jamil R, Chowdhury A, et al. Circulating anti-nuclear autoantibodies in COVID-19 survivors predict long COVID symptoms. Eur Respir J. 2023;61(1):2200970. doi: 10.1183/13993003.00970-2022
  56. Arthur JM, Forrest JC, Boehme KW, et al. Development of ACE2 autoantibodies after SARS-CoV-2 infection. PLoS One. 2021;16(9):e0257016. doi: 10.1371/journal.pone.0257016
  57. Ueland T, Holter JC, Holten AR, et al. Distinct and early increase in circulating MMP-9 in COVID-19 patients with respiratory failure: MMP-9 and respiratory failure in COVID-19. J Infect. 2020;81(3): e41–e43. doi: 10.1016/j.jinf.2020.06.061
  58. Wallukat G, Hohberger B, Wenzel K, et al. Functional autoantibodies against G-protein coupled receptors in patients with persistentlLong-COVID-19 symptoms. J Transl Autoimmun. 2021;4:100100. doi: 10.1016/j.jtauto.2021.100100
  59. Franke C, Ferse C, Kreye J, et al. High frequency of cerebrospinal fluid autoantibodies in COVID-19 patients with neurological symptoms. Brain Behav Immun. 2021;93:415–419. doi: 10.1016/j.bbi.2020.12.022
  60. Sukocheva OA, Maksoud R, Beeraka NM, et al. Analysis of post COVID-19 condition and its overlap with myalgic encephalomyelitis/chronic fatigue syndrome. J Adv Res. 2022;40:179–196. doi: 10.1016/j.jare.2021.11.013
  61. Kreye J, Reincke SM, Kornau HC, et al. A therapeutic non-self-reactive SARS-CoV-2 antibody protects from lung pathology in a COVID-19 hamster model. Cell. 2020;183(4):1058–1069.e19. doi: 10.1016/j.cell.2020.09.049
  62. Marino Gammazza A, Légaré S, Lo Bosco G, et al. Molecular mimicry in the post-COVID-19 signs and symptoms of neurovegetative disorders? Lancet Microbe. 2021;2(3):e94. doi: 10.1016/S2666-5247(21)00033-1
  63. Kovarik JJ, Bileck A, Hagn G, et al. A multi-omics based anti-inflammatory immune signature characterizes long COVID-19 syndrome. iScience. 2023;26(1):105717. doi: 10.1016/j.isci.2022.105717
  64. Brodin P, Casari G, Townsend L, et al. COVID Human Genetic Effort Studying severe long COVID to understand post-infectious disorders beyond COVID-19. Nat Med. 2022;28(5):879–882. doi: 10.1038/s41591-022-01766-7
  65. Klein J, Wood J, Jaycox J, et al. Distinguishing features of Long COVID identified through immune profiling. medRxiv. 2022 (in press). doi: 10.1101/2022.08.09.22278592
  66. Arostegui D, Castro K, Schwarz S, et al. Persistent SARS-CoV-2 nucleocapsid protein presence in the intestinal epithelium of a pediatric patient 3 months after acute infection. JPGN Reports. 2022;3(1):e152. doi: 10.1097/PG9.0000000000000152
  67. Glynne P, Tahmasebi N, Gant V, Gupta R. Long COVID following mild SARS-CoV-2 infection: characteristic T cell alterations and response to antihistamines. J Investig Med. 2022;70(1):61–67. doi: 10.1136/jim-2021-002051
  68. Mehandru S, Merad M. Pathological sequelae of long-haul COVID. Nat Immunol. 2022;23(2):194–202. doi: 10.1038/s41590-021-01104-y

补充文件

附件文件
动作
1. JATS XML

版权所有 © Sсherbak S.G., Sarana A.M., Vologzhanin D.A., Kamilova T.A., Golota A.S., Makarenko S.V., 2023

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».