EFFECT OF NARINGENIN ON THE GROWTH OF PLANKTONIC CULTURE AND BIOFILMS AS WELL AS THE CAMP LEVEL AND PECTINASE ACTIVITY OF PSEUDOMONAS SYRINGAE PV. PISI AND RHYZOBIUM LEGUMINOSARUM BV. VICIAE
- Authors: Lomovatskaya L.A.1, Goncharova A.M.1
-
Affiliations:
- Siberian Institute of Plant Physiology and Biochemistry (SIPPB SB RAS)
- Issue: Vol 61, No 4 (2025)
- Pages: 385-392
- Section: Articles
- URL: https://bakhtiniada.ru/0555-1099/article/view/353490
- DOI: https://doi.org/10.7868/S3036576
- ID: 353490
Cite item
Abstract
The aim of this study was to investigate the effect of naringenin on the growth dynamics of planktonic culture, biofilm density, as well as the concentration of cAMP and pectinase activity of P. syringaei and R. leguminosarum. The studies showed that naringenin did not affect the growth dynamics of the planktonic culture of P. syringaei, but the titer of the R. leguminasarum culture decreased at 1 nM naringenin. 500 pM naringenin suppressed the density of P. syringae biofilms and stimulated it in rhizobia. The cAMP level under the influence of both naringenin concentrations increased to varying degrees both in planktonic and biofilms in both cultures. Naringenin completely suppressed pectinase activity in P. syringaei biofilms, but stimulated it in R. leguminasarum . Thus, naringenin can be considered as an exogenous promising regulator for practical application in the fight against Pseudomonas syringae pv. pisi.
About the authors
L. A. Lomovatskaya
Siberian Institute of Plant Physiology and Biochemistry (SIPPB SB RAS)
Email: LidaL@sifibr.irk.ru
Irkutsk, 664033 Russia
A. M. Goncharova
Siberian Institute of Plant Physiology and Biochemistry (SIPPB SB RAS)
Author for correspondence.
Email: LidaL@sifibr.irk.ru
Irkutsk, 664033 Russia
References
- Steinauer K ., Thakur M . P ., Hannula S . E ., Weinhold A ., Uthe A ., van Dam N . M ., Bezemer T . M . // Plant Cell Environ . 2023. V. 46. P. 1885–1899. https://doi.org/10.1111/pce.14570
- Ali S., Glick B.R. // Impacting Plant Biocontrol Crowth. Crops. 2024. V. 4. P . 43–54. https://doi.org/10.3390/crops4010004
- Ломоватская Л.А., Макарова Л.Е., Кузакова О.В., Романенко А.С., Гончарова А.М. // Прикладная биохимия и микробиология. 2016. Т . 52. № 3. С . 287–292. https://doi.org/10.1134/S0003683816030108
- Dennis M.W., Karoney O., Muge E., Nyaboga E. N., Baraza D.L., Shibairo S.I., Naluyange V . // Front. Sustain. Food Systems. 2021. V. 4. Article 604396. https://doi.org/10.3389/fsufs.2020.604396
- Siczek A., Frą c M., Nawrocka A., Wielbo J., Kidaj D. // Acta Agriculturae Scandinavica, Section B—Soil & Plant Science. 2015. V. 65. №. 2. P. 125–131. http://dx.doi.org/10.1080/09064710.2014.975835
- Vikram A., Jayaprakasha G.K. , Jesudhasan P.R., Pil- lai S.D. , Patil B.S. // Internet J. Food Microbiol. 2010. V. 15. P. 109–116. https://doi.org/ 10.1111/j.1365-2672.2010.04677.x
- Hernando-Amado S., Alcalde-Rico M., Gil-Gil T., José R., Valverde J.R., Martínez J.L. // Front. Mol. Bios . 2020. V. 7. Article 25. https://doi.org/10.3389/fmolb.2020.00025
- Zhang Y ., Wang J.-F., Dong J., Wei J.-Y., Wang Y.-N., Dai X. -H. et al. // Fitoterapia. 2013. V. 86. 92–99. https:// doi.org/10.1016/j.fitote.2013.02.001
- Smith R.S., Wolfgang M.C., Lory S . // Infect. Immun. 2004. V. 72. № 3. P. 677– 1684. https://doi.org/10.1128/IAI.72.3.1677-1684.2004
- Lomovatskaya L.A., Romanenko A.S., Filinova N.V., Dudareva L.V. // Plant Cell Reports. 2011. V. 30. № 1. P. 125–132. https://doi: 10.1007/s00299-010-0950-5.
- Bradford M.M. // Anal. Biochem. 1976. V . 72. P . 248–254.
- Вешняков В.А., Хабаров Ю.Г., Камакина Н.Д . // Химия растительного сырья. 2008. Т . 6. № 4. С . 47–50.
- Kerby D.S. // Comprehens. Psychol. 2014. V. 3 . 11.I T. 3.1. https://doi.org/10.2466/11.IT.3.1
- Pantigoso H.A. , Newberger D., Vivanco J.M. // J. Appl. Microb. 2022 . V. 133. № 5. P. 2864–2876. https://doi: 10.1111/jam.15686
- Nouwen N., Gargani D., Giraud E. // Molecular Plant-Microbe Interactions. 2019. V . 32. №. 11. P . 1517–1525. https :// doi . org /10.1094/ MPMI -05-19-0133- R 16
- Макарова Л.Е., Дударева Л.В., Петрова И.Г., Васильева Г. Г. // Прикл. биохимия и микробиология. 2016. Т . 52. № 2. С . 205–213. https://doi.org/10.7868/S0555109916020094
- Tsvetkova G., Teofilova T., Georgiev G. I. // General Appl. Plant Physiol. 2006. V. 1. P. 67–71.
- Novak K., Chovanec P., Škrdleta V., Kropáčová M., Lisá L. , Němcová M. et al. // 2002. V. 375. P. 1735–1745. https://doi.org/10.1093/jxb/erf016
- Szoboszlay M., White-Monsant A., Moe L.A. // PLoS One. 2016. V. 11. № 1. Р . e 0146555. https://doi.org/10.1371/journal. pone.0146555
- Mir D.H., Rather M.A. // Appl.Biochem. Microbiol. 2024. V. 60. № 2. P. 264–279. https://doi.org /10.1134/S000368382402011
- Kalia D., Merey G., Nakayama S., Zheng Y., Zhou J., Luo Y. // Chem. Coc. Rev. 2013. V. 42. № 1. P. 305–341. https://doi.org/10.1039/c2cs35206k
- Meneses N., Taboada H., Dunn M.F., Vargas M. C., Buchs N., Heller M., Encarnación S. // Archiv. Microbiol. 2017. V. 199. Р . 737–755. https://doi.org/10.1007/s00203-017-1351-8
- Ono K., Oka R., Toyofuku M., Sakaguchi A., Hama-da M., Yoshida S., Nomura N. // Microbes Environ. 2014. V. 29. P. 104–106. https://doi.org/10.1264/jsme2.me13151
- Kalivoda E., Brothers K., Stella M., Schmitt M., Shanks R. // PLoS One. 2013. V. 8. № 7. P. 1–11. https://doi.org/10.1371/journal.pone.0071267
- Liu C., Sun D., Zhu J., Jiawen Liu J., Liu W. // Front. Microb. 2020. V. 11. Article 802. https://doi.org/10.3389/fmicb.2020.00802
- Green J., Stapleton M.R., Smith L.J., Artymiuk P.J., Kahramanoglou C., Hunt D.M., Buxton R.S. // Microbiol. 2014. V. 18. P. 1–7. https ://doi: 10.1016/j.mib.2014.01.003
- Recourt K., Van Brussel A. A., Driessen A.J., Lugten-berg B.J. // J. Bacteriol. 1989. V . 171. P . 4370–4374. https :// doi . org /10.1128/ jb .171.8.4370-4377.1989
- Гончарова А.М., Ломоватская Л.А., Романен- ко А.С. // Прикл. биохимия и микробиология. 2023. Т . 59. № 3. С . 344–348. https://doi.org/10.1134/S0003683823030079
- West S .E., Sample A.K., Runyen-Janecky L. // J. Bacteriol. 1994. V. 176. № 24. P. 7532–7542. https://doi.org/10.1128/jb.176.24.7532-7542.1994
- Zhan L., Han Y., Yang L., Geng J., Li Y., Gao H. // Infect. Immun. 2008. V. 76. № 11. P. 5028–5037. https://doi.org/10.1128/iai.00370-08
- Lathem W.W., Schroeder J .A., Bellows L.E., Ritzert J.T., Koo J.T ., Price P.A. // mBio J. 2014. V. 5. № 1. e01038– е 01013. https://doi.org/10.1128/mBio.01038-13
- Ogura K., Matsui H., Yamamoto M., Noutoshi M., Toyoda K., Fumiko T., Ichinose Y. // Biochem. Biophys. Report. 2021. V. 26. 100944. https://doi.org /10.1016/j.bbrep.2021.100944
- Taguthi F., Ichinose Y. // Mol. Plant Pathol . 2013. V. 14. № 3. P. 279–292. https://doi.org/10.1111/mpp.12003
- Crabill E., Joe A., Block A., van Rooyen J., Alfano J. // Plant Physiol. 2010. V. 154 . № 1. P. 233–244. https://doi.org/10.1104/pp.110.159723
- Magro P. , Varvaro L., Chilosi G., Avanzo C., Balestra G.M. // FEMS Microbiol. Letters. 1994. V. 117. № 1. P. 1–5. https:// doi.org/10.1111/j.1574-6968.1994.tb06733.x
- Ломоватская Л . А ., Романенко А . С ., Рыкун О . В . // Микробиол . 2015. Т . 84. № 4. С . 473–476. https://doi.org/10.1134/S 0026261715040116
- Nasser W., Robert-Baudouy J., Reverchon S. // Mol. Microb. 1997. V. 26. № 5. P. 1071–1082. https://doi.org /10.1046/j.1365-2958.1997.6472020.x
Supplementary files

