Enzymatic Polymerization/Copolymerization of Aniline and 3-Aminobenzoic Acid on a Sodium Lignosulfonate Template
- Autores: Vasil’eva I.S.1, Morozova O.V.1, Khlupova M.E.1, Yaropolov A.I.1
-
Afiliações:
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences
- Edição: Volume 61, Nº 4 (2025)
- Páginas: 356-362
- Seção: Articles
- URL: https://bakhtiniada.ru/0555-1099/article/view/353488
- DOI: https://doi.org/10.7868/S3034574
- ID: 353488
Citar
Resumo
Enzymatic polymerization/copolymerization of aniline (ANI) and 3-aminobenzoic acid (3AB А) was performed using natural polyelectrolyte sodium lignosulfonate (LS) as template. The fungal laccase Trametes hirsuta was used as a catalyst, and air oxygen served as an oxidant. Water-soluble complexes of homopolymers polyaniline (PANI) and poly(3-aminobenzoic acid) ( P ( 3ABA )) and copolymer poly(aniline-co-3-aminobenzoic acid) ( P ( ANI-3ABA )) were prepared and characterized by UV-Vis and FTIR spectroscopy and cyclic voltammetry. The conductivity of the samples was determined. The P(ANI-3ABK)–LS copolymer and P(3ABK)–LS homopolymer complexes showed high efficiency as an active component of UV-blocking films.
Palavras-chave
Sobre autores
I. Vasil’eva
Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences
Email: yaropolov@inbi.ras.ru
Moscow, 119071 Russia
O. Morozova
Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences
Email: yaropolov@inbi.ras.ru
Moscow, 119071 Russia
M. Khlupova
Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: yaropolov@inbi.ras.ru
Moscow, 119071 Russia
A. Yaropolov
Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences
Email: yaropolov@inbi.ras.ru
Moscow, 119071 Russia
Bibliografia
- Demuner I.F., Colodette J.L., Demuner A.J., Jar- dim C.M . // BioRes. 2019. V. 14. №3. P. 7543–7581. https://doi.org/10.15376/biores.14.3.Demuner
- Xiao B., Sun X.F., Sun R. // Polym. Degrad. Stab. 2001. V. 74. № 2. P. 307–319. https://doi.org/10.1016/S0141-3910(01)00163-X
- Yang L., Wang D., Zhou D., Zhang Y. // Int. J. Biol. Macromol. 2016. V. 85. P. 417–424. https://doi.org/10.1016/j.ijbiomac.2016.01.005
- Zheng L., Lu G., Pei W., Yan W., Li Y., Zhang L., Huang C., Jiang Q. // Int. J. Biol. Macromol. 2021. V. 190. P. 291–300. https://doi.org/10.1016/j.ijbiomac.2021.08.168
- Li F., Lv W., Huang D., Zeng C., Wang R. // Molecules 2023. V. 28. № 10. Article number 4088. https://doi.org/10.3390/molecules28104088
- Morozova O., Vasil ’ eva I., Shumakovich G., Khlupova M., Chertkov V., Shestakova A., Yaropolov A. // Int. J. Mol. Sci . 2024. V. 25. № 15. Article number 8277. https://doi.org/10.3390/ijms25158277
- Yang J., Ching Y.C., Chuah C.H. // Polymers 2019. V. 11. № 11. Article 751. https://doi.org/10.3390/polym11050751
- Sethupathy S., Morales G.M., Gao L., Wang H., Yang B., Jiang J., Sun J., Zhu D. // Bioresour. Technol. 2022. V. 347. Article 126696. https://doi.org/10.1016/j.biortech.2022.126696
- Gujjala L.K.S., Kim J., Won W. // J. Clean. Prod. 2022. V. 363. Article 132585. https://doi.org/10.1016/j.jclepro.2022.132585
- Souza R.E., Gomes F.J.B., Brito E.O., Lelis R.C.C., Batalha L.A.R., Santos F.A., Longue J. D. // J. Appl. Biotechnol. Bioeng. 2020. V. 7. № 3. P. 100–105. https://doi.org/10.15406/jabb.2020.07.00222
- Li P.H., Wei Y.M., Wu C.W., Yang C., Jiang B., Wu W.J. // RSC Adv. 2022. V. 12. № 30. P. 19485–19494. https://doi.org/10.1039/D2RA02200A
- Majeed H., Mohammed L.A., Hammoodi O.G., Sehgal S., Alheety M.A., Saxena K.K. et al. // Int. J. Polym. Sci. 2022. V. 2022. Article 9047554. https://doi.org/10.1155/2022/9047554
- Sharma N., Singh A., Kumar N., Lal M., Arya S. // J. Mater. Sci. 2024. V. 59. № 15. P. 6206–6244. https://doi.org/10.1007/s10853-024-09562-z
- Shi N.L., Guo X.M., Jing H.M., Gong J., Sun C., Yang K. // J. Mater. Sci. Technol. 2006. V. 22. № 3. P. 289–290. https://www.jmst.org/CN/Y2006/V22/I03/289
- Gizdavic-Nikolaidis M.R., Bennett J.R., Swift S., Eas- teal A.J., Ambrose M. // Acta Biomater. 2011. V. 7. № 12. P. 4204–4209. https://doi.org/10.1016/j.actbio.2011.07.018
- Lashkenari M.S., Eisazadeh H. // Adv. Polym. Technol. 2017. V. 33. № S1. Article 21466. https://doi.org/10.1002/adv.21466
- Boeva Z.A., Sergeyev V.G. // Polym. Sci. Ser. C 2014. V. 56. № 1. P. 144–153. http://doi.org/10.1134/S1811238214010032
- Otrokhov G.V., Morozova O.V., Vasil ’ eva I.S., Shumako-vich G.P., Zaitseva E.A., Khlupova M.E., Yaropolov A.I. // Biochemistry (Moscow). 2013. V. 78. P. 1539–1553. http://doi.org/10.1134/S0006297913130117
- Morozova O.V., Shumakovich G.P., Gorbacheva M.A., Shleev S.V., Yaropolov A.I. // Biochemistry (Moscow). 2007. V. 72. № 10. P. 1136–1150. http://doi.org/10.1134/S0006297907100112
- Roy S., Fortier J.M., Nagarajan R., Tripathy S., Ku- mar J., Samuelson L.A., Bruno F.F. // Biomacromo-lecules. 2022. V. 3. № 5. P. 937–941. https://doi.org/10.1021/bm0255138
- Xu W., Chen Y., Kang J., Li B. // Polym. Bull. 2019. V. 76. № 8. P. 4103–4116. https://doi.org/10.1007/s00289-018-2586-5
- Gorshina E.S., Rusinova T.V., Biryukov V.V., Morozo-va O.V., Shleev S.V., Yaropolov A.I. // Appl. Biochem. Microbiol. 2006. V. 42. № 6. P. 558–563. https://doi.org/10.1134/S0003683806060056
- Salavagione H.J., Acevedo D.F., Miras M.C., Motheo A.J., Barbero C.A. // J. Polym. Sci. Part A: Polym. Chem. 2004. V. 42. № 22. P. 5587–5599. http://doi.org/10.1002/pola.20409
- Huang W.S., MacDiarmid A.G. // Polymer 1993. V. 34. № 9. P. 1833–1845. https://doi.org/10.1016/0032-3861(93)90424-9
- Liu W., Kumar J., Tripathy S., Senecal K.J., Samuelson L. // J. Am. Chem. Soc. 1999. V. 121. № 1. P. 71–78. https://doi.org/10.1021/ja982270b
- Rumbau V., Pomposo J.A., Alduncin J.A., Grande H., Mecerreyes D., Ochoteco E. // Enz. Microb. Technol. 2007. V. 40. № 5. P. 1412–1421. https://doi.org/10.1016/j.enzmictec.2006.10.024
- Boeriu C.G., Bravo D., Gosselink R.J.A., van Dam J.E.G. // Ind. Crops. Prod. 2004. V. 20. № 2. P. 205 –218. https://doi.org/10.1016/j.indcrop.2004.04.022
- Karimov O.K., Teptereva G.A., Chetvertneva I.A., Movsumzade E.M., Karimov E.K. // IOP Conf. Ser.: Earth Environ. Sci. 2021. V. 839. Article 022086. https://iopscience.iop.org/article/10.1088/1755-1315/839/2/022086
- Shen Q., Zhang T., Zhu M.F. // Colloids Surf. A: Phy-sicochem. Eng. Asp. 2008. V. 320. №1–3. P. 57– 60. https://doi.org/10.1016/j.colsurfa.2008.01.012
- Kubo S., Kadla J.F. // Biomacromolecules 2005. V. 6. № 5. P. 2815–2821. https://doi.org/10.1021/bm050288q
- Furukawa Y., Ueda F., Hyodo Y., Harada I., Nakajima T., Kawagoe T. // Macromolecules 1988. V. 21. № 5. P. 1297–1305. https://doi.org/10.1021/ma00183a020
- Wei Y., Hariharan R., Patel S.A . // Macromolecules. 1990. V. 23. № 3. P. 758–764. https://doi.org/10.1021/ma00205a011
- Trchová M., Šeděnková I., Tobolková E., Stejskal J. // Polym. Degrad. Stab. 2004. V. 86. № 1. P. 179–185. https://doi.org/10.1016/j.polymdegradstab.2004. 04.011
- Sadeghifar H, Ragauskas A. // Polymers 2020. V. 12. № 5. Article 1134. https://doi.org/10.3390/polym12051134
- Vasil ’ eva I., Morozova O., Shumakovich G., Yaropo- lov A . // Int. J. Mol. Sci. 2022. V. 23. № 49. Article 11409. https://doi.org/10.3390/ijms231911409
Arquivos suplementares

