Combined systems of recombinase polymerase amplification and membrane immunochromatography or enzyme linked immunoassay for quantitative determination of Salmonella enterica bacterial DNA
- Authors: Serchenya T.S.1, Akhremchuk K.U.2, Valentovich L.N.2, Lapina V.S.1, Sviridov O.V.1
-
Affiliations:
- Institute of Bioorganic Chemistry of National Academy of Sciences of Belarus
- Institute of Microbiology of National Academy of Sciences of Belarus
- Issue: Vol 61, No 2 (2025)
- Pages: 194-206
- Section: Articles
- URL: https://bakhtiniada.ru/0555-1099/article/view/308614
- DOI: https://doi.org/10.31857/S0555109925020091
- EDN: https://elibrary.ru/epbdar
- ID: 308614
Cite item
Abstract
The combined bioanalytical systems for the detection ofSalmonella entericabacteria in milk have been developed and studied. These test systems are based on isothermal recombinase polymerase amplification (RPA) of a fragment of theinvAgene and detection of the DNA amplicons containing biotin and fluorescein residues by a rapid membrane chromatography on test strips or an enzyme-linked immunosorbent assay (ELISA) in microplates. It was shown that the developed test systems are specific, sensitive and easy to perform. The RPA procedure requires 20 min at a temperature of 40°C. The immunochromatographic detection of amplicons provides rapid testing within 10 min as well as possible visual recording of the result. ELISA takes 75 min, allows to analyze a large number of samples and quantify the result. It has been established that the developed bioanalytical systems are characterized by broad specificity for various serotypes ofSalmonella entericasubspeciesenterica, belonging to serogroups B, C, D and E. The detection limit of genomic DNA ofS. entericain the test systems was 0.5 fg. The detection limit ofSalmonella entericabacteria in artificially contaminated milk samples was 8 × 102CFU/ml. After enrichment for 6 h, the detection limit proved to be 2 × 100CFU per 25 g of milk.
About the authors
T. S. Serchenya
Institute of Bioorganic Chemistry of National Academy of Sciences of Belarus
Email: serchenya@tut.by
Minsk, 220084 Belarus
K. U. Akhremchuk
Institute of Microbiology of National Academy of Sciences of Belarus
Email: serchenya@tut.by
Minsk, 220084 Belarus
L. N. Valentovich
Institute of Microbiology of National Academy of Sciences of Belarus
Email: serchenya@tut.by
Minsk, 220084 Belarus
V. S. Lapina
Institute of Bioorganic Chemistry of National Academy of Sciences of Belarus
Email: serchenya@tut.by
Minsk, 220084 Belarus
O. V. Sviridov
Institute of Bioorganic Chemistry of National Academy of Sciences of Belarus
Author for correspondence.
Email: serchenya@tut.by
Minsk, 220084 Belarus
References
- Fung F.,Wang H.S.,Menon S. // Biomed. J. 2018. V. 41 № 2. P. 88–95. https://doi.org/10.1016/j.bj.2018.03.003
- Mkangara M. // Int. J. Food Sci. 2023 V. 2023. 8899596. https://doi.org/10.1155/2023/8899596
- Lin L.,Zheng Q.,Lin J.,Yuk H.-G.,Guo L. // Eur. Food Res. Technol. 2020. V. 246. P. 373–395. https://doi.org/10.1007/s00217-019-03423-9
- Wang M.,Zhang Y.,Tian F.,Liu X.,Du S.,Ren G. // Foods. 2021. V. 10. № 10. P. 2402. https://doi.org/10.3390/foods10102402
- “Salmonella”, Official Methods of Analysis of AOAC INTERNATIONAL, 22. / Ed. G.W. Latimer. Oxford University Press, 2023. P. C17-256–C17-259. https://doi.org/10.1093/9780197610145.003.2282
- De Boer E.,Beumer R.R. // Int. J. Food Microbiol. 1999. V. 50. Р. 119–130. https://doi.org/10.1016/S0168-1605(99)00081-1
- Techathuvanan C.,Draughon F.A.,D’Souza D.H. // J. Food Prot. 2011. V. 74. Р. 294–301. https://doi.org/10.4315/0362-028X.JFP-10-306
- Gao D.,Yu J.,Dai X.,Tian Y.,Sun J.,Xu X.,Cai X. // Poult. Sci. 2023. V. 102. 102513. https://doi.org/10.1016/j.psj.2023.102513
- Wang W.,Liu L.,Song S.,Tang L.,Kuang H.,Xu C. // Sensors. 2015. V. 15. P. 5281–5292. https://doi.org/10.3390/s150305281
- Kuhn K.G.,Falkenhorst G.,Ceper T.H.,Dalby T.,Ethelberg S.,Mølbak K.,Krogfelt K.A. // J. Med. Microbiol. 2012. V. 61. P. 1–7. https://doi.org/10.1099/jmm.0.034447-0
- Hendrickson O.D.,Byzova N.A.,Safenkova I.V.,Panferov V.G.,Dzantiev B.B.,Zherdev A.V. // Nanomaterials (Basel). 2023. V. 13. № 23. P. 3074. https://doi.org/10.3390/nano13233074
- Zhang H.Q.,Li H.N.,Zhu H.L.,Pekarek J.,Podesva P.,Chang,H.L.,Neuzil P. // Sens. Actuator B-Chem. 2019. V. 298. Р. 1–6. https://doi.org/10.1016/j.snb.2019.126924
- Sidstedt M.,Rådström P.,Hedman J. // Anal. Bioanal. Chem. 2020. V. 412. № 9. Р. 2009–2023. https://doi.org/10.1007/s00216-020-02490-2
- Bickley J.,Short J.K.,McDowell D.G.,Parkes H.C. // Lett. Appl. Microbiol. 1996. V. 22. № 2. P. 153–158. https://doi.org/10.1111/j.1472-765X.1996.tb01131.x
- Powell H.A.,Gooding C.M.,Garrett S.D.,Lund B.M.,Mckee R.A. // Lett.Appl. Microbiol. 1994. V. 8. № 1. P. 59–61. https://doi.org/10.1111/j.1472-765X.1994.tb00802.x
- Ivanov A.V.,Safenkova I.V.,Drenova N.V.,Zherdev A.V.,Dzantiev B.B. // Biosensors. 2022. V. 12. P. 1174. https://doi.org/10.3390/bios12121174
- Hu J.,Huang R.,Sun Y.,Wei X.,Wang Y.,Jiang C. et al. // J. Microbiol. Methods. 2019. V. 158. P. 25–32. https://doi.org/10.1016/j.mimet.2019.01.018
- Chen J.,Liu X.,Chen J.,Guo Z.,Wang Y.,Chen G. et al. // Food Anal. Methods. 2019. V. 12. P. 1791–1798. https://doi.org/10.1007/s12161-019-01526-3
- Daher R.K.,Stewart G.,Boissinot M.,Bergeron M.G. // Clin. Chem. 2016. V. 62. P. 947–958. https://doi.org/10.1373/clinchem.2015.245829
- Notomi T.,Okayama H.,Masubuchi H.,Yonekawa T.,Watanabe K.,Amino N.,Hase T. // Nucleic Acids Res. 2000. V. 28. № 12. P. E63. https://doi.org/10.1093/nar/28.12.e63
- Barreda-García S.,Miranda-Castro R.,de-Los-Santos-Álvarez N.,Miranda-Ordieres A.J.,Lobo-Castañón M.J. // Anal. Bioanal. Chem. 2018. V. 410. № 3. P. 679–693. https://doi.org/10.1007/s00216-017-0620-3
- Le B.H.,Seo Y.J.// Bioorg. Med. Chem. Lett. 2018. V. 28. P. 2035–2038. https://doi.org/10.1016/j.bmcl.2018.04.058
- Ivanov A.V.,Safenkova I.V.,Zherdev A.V.,Dzantiev B.B. // Talanta. 2020. V. 210. P. 120616. https://doi.org/10.1016/j.talanta.2019.120616
- Zhao L.,Wang J.,Sun X.X.,Wang J.,Chen Z.,Xu X. et al. // Front Cell Infect. Microbiol. 2021. V. 11. P. 631921. https://doi.org/10.3389/fcimb.2021.631921
- Ahmed A.,van der Linden H.,Hartskeerl R.A. // Int. J. Environ. Res. Public Health. 2014. V. 11. P. 4953–4964. https://doi.org/10.3390/ijerph110504953
- Kim J.Y.,Lee J.-L. // J. Food Saf. 2016. V. 36. P. 402–411. https://doi.org/10.1111/jfs.12261
- Li J.,Ma B.,Fang J.,Zhi A.,Chen E.,Xu Y.,Sun C.,Zhang M. // Foods. 2020. V. 9. № 1. P. 27. https://doi.org/10.3390/foods9010027
- Liao C.,Pan L.,Tan M.,Zhou Z.,Long S.,Yi X. et al.// Front. Bioeng. Biotechnol. 2024. V. 12. 1379939. https://doi.org/10.3389/fbioe.2024.1379939
- Liu R.,Wang Z.,Liu X.,Chen A.,Yang S. // Poult. Sci. 2020. V. 99. № 12. P. 7225–7232. https://doi.org/10.1016/j.psj.2020.10.020
- Santiago-Felipe S.,Tortajada-Genaro L.A.,Morais S.,Puchades R.,Maquieira A. // Food Chem. 2015. V. 174. P. 509–515. https://doi.org/10.1016/j.foodchem.2014.11.080
- Serchenya T.S.,Akhremchuk K.U.,Valentovich L.N.,Lapina V.S.,Sviridov O.V. // Proceedings of the National Academy of Sciences of Belarus. Chemical series.2024. V. 60. № 4. P. 314–325 (in Russian). https://doi.org/10.29235/1561-8331-2024-60-4-314-325
- Frens G. // Nature Physical Science. 1973. V. 241. P. 20–22. https://doi.org/10.1038/physci241020a0
- Byzova N.A.,Serchenya T.S.,Vashkevich I.I.,Zherdev A.V.,Sviridov O.V.,Dzantiev B.B. // Microchemical Journal. 2020. V. 156. Аrticle 104884. https://doi.org/10.1016/j.microc.2020.104884
- Hermanson G.T. Bioconjugate Techniques. Elsevier. 1996. P. 377-380.
- Wallace H.A,Wang H.,Jacobson A.,Ge B.,Zhang G.,Hammack T.Bacteriological Analytical Manual (BAM). Chapter 5: Salmonella. 2023. https://www.fda.gov/food/laboratory-methods-food/bacteriological-analytical-manual-bam
- Rahn K.,De Grandis S.A.,Clarke R.C.,McEwen S.A.,Galán J.E.,Ginocchio C. et al. // Mol. Cell Probes. 1992. V. 6. № 4. P. 271–279. https://doi.org/10.1016/0890-8508(92)90002-f
- Galán J.E.,Curtiss R. // Proc. Natl. Acad. Sci. USA. 1989. V. 86. № 16. Р. 6383–6387. https://doi.org/10.1073/pnas.86.16.6383
- González-Escalona N.,Brown E.W.,Zhang G. // Food Res. Int. 2012. V. 48. P. 202–208. https://doi.org/10.1016/j.foodres.2012.03.009
- Brenner F.W.,Villar R.G.,Angulo F.J.,Tauxe R.,Swaminathan B. // J. Clin. Microbiol. 2000. V. 38. № 7. P. 2465–2467. https://doi.org/10.1128/JCM.38.7.2465-2467.2000
- Gao W.,Huang H.,Zhu P.,Yan X.,Fan J.,Jiang J.,Xu J. // Bioprocess Biosyst. Eng. 2018 V. 41. № 5. Р. 603–611. https://doi.org/10.1007/s00449-018-1895-2
- Choi G.,Jung J.H.,Park B.H.,Oh S.J.,Seo J.H.,Choi J.S.,Kim D.H.,Seo T.S. // Lab on a Chip. 2016. V. 16. № 12. P. 2309–2316. https://doi.org/10.1039/c6lc00329j
- Yang Q.,Wang F.,Jones K.L.,Meng J.,Prinyawiwatkul W.,Ge B.// Food Microbiol. 2015. V. 46. P. 485–493. https://doi.org/10.1016/j.fm.2014.09.011
Supplementary files
