Method for automated calculation of grains and voids in metal films and TSV-structures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Scientific novelty of this work lies in the application of well-established methods (Feret diameter method and equivalent diameter method) in a new domain – the design and development of microelectronic components. Accurate measurements of metal grain sizes and voids in TSV structures are critically important for improving the reliability and performance of micro- and nanoelectronic devices. Manual methods for analyzing the morphological characteristics of materials are time-consuming and prone to subjective errors. This paper presents an automated approach for calculating grain sizes based on the processing of scanning electron microscope (SEM) images. The methodology incorporates two approaches for calculating the average grain size: the Feret diameter method and the equivalent circle method. The correlation between the results of these methods confirms the validity of the segmentation and the high accuracy of the analysis. Experimental studies demonstrate that the proposed methodology effectively identifies grains and voids, even in low-contrast and noisy images. The results confirm the versatility, high accuracy, and reproducibility of the method, as well as its potential for integration into quality control and microelectronic system design processes. The automation of analysis significantly reduces the human factor, shortens data processing time, and opens up new opportunities for optimizing the manufacturing processes of micro- and nanoelectronic devices.

About the authors

N. A. Dyuzhev

National Research University of Electronic Technology (MIET)

Email: ivanin@ckp-miet.ru
Moscow, Russia

E. E. Gusev

National Research University of Electronic Technology (MIET); VSTU named after G.F. Morozov

Email: ivanin@ckp-miet.ru
Moscow, Russia; Voronezh, Russia

P. S. Ivanin

National Research University of Electronic Technology (MIET); VSTU named after G.F. Morozov

Email: ivanin@ckp-miet.ru
Moscow, Russia; Voronezh, Russia

V. K. Zolnikov

VSTU named after G.F. Morozov

Email: ivanin@ckp-miet.ru
Voronezh, Russia

M. Y. Fomichev

National Research University of Electronic Technology (MIET)

Author for correspondence.
Email: ivanin@ckp-miet.ru
Moscow, Russia

References

  1. Dyzhev N.A., Gusev E.E., Kushnarev I.V., Bespa- lov V.A. Influence of heat treatment on the physical and mechanical properties of thin-film membrane Al-structures of various shapes // Letters to ZhTF. 2025. V. 51. No. 2. P. 10–14. https://doi.org/10.61011/PJTF.2025.02.59549.20034
  2. Bespalov V.A. et al. Review of methods for measuring the mechanical strength of thin films // Modeling of Systems and Processes. 2022. V. 15. No. 3. P. 110. https://doi.org/10.24108/preprints-3112455
  3. Bragina O.V., Karpenko S.I., Ivanov M.N. Influence of microstructure on the mechanical properties of thin copper films // Modern Materials and Technologies. 2021. No. 2. P. 15–23.
  4. Dyzhev N.A., Gusev E.E., Kushnarev I.V. et al. Features of the influence of grain orientation and size on the mechanical properties of thin-film Al/Mo membranes // Letters to ZhTF. 2024. V. 50. No. 9. P. 5–15. https://doi.org/10.61011/PJTF.2024.09.57561.19833
  5. Dyzhev N.A., Gusev E.E., Portnova E.O., Makhiboroda M.A. Study of the effect of radiation exposure on grain size and mechanical properties of thin-film aluminum // Izvestiya RAN. Mechanics of Solids. 2024. No. 1. P. 158–167. https://doi.org/10.31857/S1026351924010084
  6. Dyzhev N.A., Gusev E.E., Portnova E.O., Novikova O.V. Influence of cyclic loading on the physical and mechanical properties of thin-film membrane structures // Izvestiya RAN. Mechanics of Solids. 2024. No. 2. P. 269–282. https://doi.org/10.31857/S1026351924020131
  7. Ismailov A.A., Petrov B.V. Influence of defects on thermal resistance in microelectronic devices // Microelectronics. 2020. V. 49. No. 6. P. 409–412.
  8. Shein G.I., Gabov V.G. Physical research methods: textbook. Perm: Perm University Press. 2020. P. 124.
  9. Mansurov G.N., Petrij O.A. Electrochemistry of thin metal films. Moscow: Nauchtekhizdat. 2019. P. 256.
  10. Gavrilova N.N., Nazarov V.V., Yarovaya O.V. Microscopic methods for determining the particle size of dispersed materials. 2012. V. 55. No. 6. P. 123–128. IBSN: 978-5-7237-1055-9
  11. Sympatec. Fundamentals of image analysis. URL: https://archive.sympatec.com/RU/ImageAnalysis/Fundamentals.html
  12. Merkus H.G. Particle size measurements: fundamentals, practice, quality. Springer Science & Business Media, 2009. V. 17. ISBN: 978-1-4020-9015-8
  13. Pabst W., Gregorova E. Characterization of particles and particle systems. ICT Prague. 2007. V. 122.
  14. Wikipedia. Feret diameter. URL: https://en.wikipedia.org/wiki/Feret_diameter
  15. Underwood E.E. Quantitative stereology. 1970. https://doi.org/10.1007/978-1-4615-8693-7_3
  16. Gu Y., O’Neal D.L. Development of an equivalent diameter expression for vertical U-tubes used in ground-coupled heat pumps // Transactions of the American Society of Heating, Refrigerating and Air-Conditioning Engineers. 1998. V. 104. P. 347–355.
  17. Al-Kayiem A.H.H., Ibrahim M.A. The influence of the equivalent hydraulic diameter on the pressure drop prediction of annular test section // IOP Conference Series: Materials Science and Engineering. 2015. V. 100. No. 1. P. 012049. https://doi.org/10.1088/1757-899X/100/1/012049
  18. Anifowoshe O., Osisanya S.O. The effect of equivalent diameter definitions on frictional pressure loss estimation in an annulus with pipe rotation // SPE Deepwater Drilling and Completions Conference. 2012. SPE-151176-MS. https://doi.org/10.2118/151176-MS
  19. Latief F.D.E. Analysis and Visualization of 2D and 3D Grain and Pore Size of Fontainebleau Sandstone Using Digital Rock Physics // Journal of Physics: Conference Series. 2016. V. 739. No. 1. P. 012047. https://doi.org/10.1088/1742-6596/739/1/012047
  20. Russ J.C. The image processing handbook. CRC Press, 2006. https://doi.org/10.1201/9780203881095
  21. Lomov A.A., Zakharov D.M., Tarasov M.A., Che- kushkin A.M., Tatarintsev A.A., Vasiliev A.L. Microstructure of island Al films on Si(111) during magnetron sputtering: influence of substrate temperature // Microelectronics. 2024. V. 53. No. 4. P. 335–345. https://doi.org/10.31857/S0544126924040063
  22. *GOST 21073.3-75.* Non-ferrous metals. Determination of grain size. Grain intersection counting method.
  23. Borisenkov S., Votintsev A., Holger R. Quality control: non-destructive testing of soldered joints using X-rays // Components and Technologies. 2003. No. 28. P. 168–170.
  24. Mair R., Liebens M., Murray T. Non-destructive acoustic metrology and void detection in 3x50μm TSV. 2016. https://doi.org/10.1109/ASMC.2016.7491103
  25. Kim H., Han J., Han T.Y.J. Machine vision-driven automatic recognition of particle size and morphology in SEM images // Nanoscale. 2020. V. 12. No. 37. P. 19461–19469. https://doi.org/10.1039/D0NR04140H

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».