III-нитридные hemt гетероструктуры с ультратонким барьером AlN: получение и экспериментальное применение

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Методом МЛЭ с плазменной активацией азота получены III-нитридные HEMT гетероструктуры, содержащие ультратонкий барьер AlN. Исследовано влияние режимов нуклеации и роста буферного слоя на кристаллическое качество, морфологию поверхности и электрофизические свойства экспериментальных ГС. Слоевое сопротивление оптимизированной ГС составило менее 230 Ом/□. Изготовлены тестовые СВЧ транзисторы с затвором Шоттки. Предложена параметрическая модель HEMT на основе AlN/GaN ГС.

Полный текст

Доступ закрыт

Об авторах

А. С. Гусев

Национальный исследовательский ядерный университет “МИФИ”

Автор, ответственный за переписку.
Email: ASGusev@mephi.ru
Россия, Москва

А. О. Султанов

Национальный исследовательский ядерный университет “МИФИ”

Email: ASGusev@mephi.ru
Россия, Москва

Р. В. Рыжук

Национальный исследовательский ядерный университет “МИФИ”

Email: ASGusev@mephi.ru
Россия, Москва

Т. Н. Неволина

Национальный исследовательский ядерный университет “МИФИ”

Email: ASGusev@mephi.ru
Россия, Москва

Д. Цунваза

Национальный исследовательский ядерный университет “МИФИ”

Email: ASGusev@mephi.ru
Россия, Москва

Г. К. Сафаралиев

Национальный исследовательский ядерный университет “МИФИ”

Email: ASGusev@mephi.ru
Россия, Москва

Н. И. Каргин

Национальный исследовательский ядерный университет “МИФИ”

Email: ASGusev@mephi.ru
Россия, Москва

Список литературы

  1. I.P. Smorchkova, S. Keller, S. Heikman et al. Two-dimensional electron-gas AlN/GaN heterostructures with extremely thin AlN barriers // Appl. Phys. Lett. – 2000. – V. 77. – I. 24. – pp. 3998-4000. https://doi.org/10.1063/1.1332408
  2. Yu Cao and Debdeep Jena, High-mobility window for two-dimensional electron gases at ultrathin AlN∕GaN heterojunctions // Appl. Phys. Lett. – 2007. – V. 90. – I. 18. – article ID 182112. https://doi.org/10.1063/1.2736207
  3. D.J. Meyer et al., High electron velocity submicrometer AlN/GaN MOS-HEMTs on freestanding GaN substrates // in IEEE Electron Device Letters. – 2013. – V. 34. – № 2. – pp. 199 – 201. doi: 10.1109/LED.2012.2228463.
  4. J.S. Xue, J.C. Zhang, Y. Hao, Ultrathin barrier AlN/GaN high electron mobility transistors grown at a dramatically reduced growth temperature by pulsed metal organic chemical vapor deposition // Appl. Phys. Lett. – 2015. – V. 107. – I. 4. – article ID 043503. https://doi.org/10.1063/1.4927743
  5. O. Ambacher, J. Smart, J.R. Shealy et al. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures // J. Appl. Phys. – 1999. – V. 85. – pp. 3222–3233. https://doi.org/10.1063/1.369664
  6. Y. Cao, K. Wang, G. Li et al. MBE growth of high conductivity single and multiple AlN/GaN heterojunctions // Journal of Crystal Growth. – 2011. – V. 323. – I. 1. – pp. 529–533. https://doi.org/10.1016/j.jcrysgro.2010.12.047
  7. X. Luo et al. Scaling and high-frequency performance of AlN/GaN HEMTs // in IEEE International Symposium on Radio-Frequency Integration Technology. – 2011. – pp. 209–212. doi: 10.1109/RFIT.2011.6141776.
  8. K. Harrouche, R. Kabouche, E. Okada et al. High performance and highly robust AlN/GaN HEMTs for millimeter-wave operation // in IEEE Journal of the Electron Devices Society. – 2019. – V. 7. – pp. 1145–1150. doi: 10.1109/JEDS.2019.2952314
  9. I.P. Smorchkova et al. AlN/GaN and (Al, Ga)N/AlN/GaN two-dimensional electron gas structures grown by plasma-assisted molecular-beam epitaxy // Journal of Applied Physics. – 2001. – V. 90. – № 10 – pp. 5196–5201. https://doi.org/10.1063/1.1412273
  10. T. Zimmermann et al. AlN/GaN Insulated-gate HEMTs with 2,3 A/mm output current and 480 mS/mm transconductance // IEEE Electron Device Letters. – 2008. – V. 29. – № 7. – pp. 661–664. https://ieeexplore.ieee.org/document/4558119
  11. C.Y. Chang et al. Very low sheet resistance AlN/GaN high electron mobility transistors // Proc. CS MANTECH Conference. – 2009. – pp. 18–21.
  12. Д.Ю. Протасов, Т.В. Малин, А.В. Тихонов и др. Рассеяние электронов в гетероструктурах AlGaN/GaN с двумерным электронным газом // Физика и техника полупроводников, 2013, том 47, вып. 1, стр. 36–47.
  13. S. Mukhopadhyay, C. Liu, J. Chen et al. Crack-free high-composition (> 35%) thick-barrier (>30 nm) AlGaN/AlN/GaN high-electron-mobility transistor on sapphire with low sheet resistance (< 250 Ω/□) // Crystals. – 2023. – V. 13(10). – Article ID 1456. https://doi.org/10.3390/cryst13101456
  14. S. Müller, K. Köhler, R. Kiefer et al. Growth of AlGaN/GaN based electronic device structures with semi-insulating GaN buffer and AlN interlayer // Phys. Stat. Sol. (C). – 2005. – V. 2. – № 7. – pp. 2639–2642. https://doi.org/10.1002/pssc.200461288
  15. R.K. Kaneriya, C. Karmakar, G. Rastogi et al. Influence of AlN spacer and GaN cap layer in GaN heterostructure for RF HEMT applications // Microelectronic engineering. – 2022. – V. 255. – Article ID 111724. https://doi.org/10.1016/j.mee.2022.111724
  16. D.F. Storm, D.S. Katzer, S.C. Binari et al. Room temperature Hall mobilities above 1900 cm2/(V∙s) in MBE-grown AlGaN/GaN HEMT structures // Electronics letters. – 2004. – V. 40. – I. 19. – pp. 1226–1227. doi: 10.1049/el:20045859
  17. D.F. Storm, D.S. Katzer, J.A. Mittereder et al. Growth and characterization of plasma-assisted molecular beamepitaxial-grown AlGaN/GaN heterostructures on free-standing hydride vapor phase epitaxy GaN substrates // Journal of vacuum science & technology B. – 2005. – V. 23. – № 3. – pp. 1190–1193. https://doi.org/10.1116/1.1885013
  18. Y.-K. Noh, S.-T. Lee, M.-D. Kim et al. High electron mobility transistors with Fe-doped semi-insulating GaN buffers on (110) Si substrates grown by ammonia molecular beam epitaxy // Journal of crystal growth. – 2019. – V. 509. – pp. 141–145. https://doi.org/10.1016/j.jcrysgro.2018.07.016.
  19. S. Wu, X. Ma, L. Yang et al. A millimeter-wave AlGaN/GaN HEMT fabricated with transitional-recessed-gate technology for high-gain and high-linearity applications // IEEE Electron device letters. – 2019. – V. 40. – № 6. – pp. 846–849. doi: 10.1109/LED.2019.2909770
  20. Y. Cordier, M. Portail, S. Chenot et al. AlGaN/GaN high electron mobility transistors grown on 3C-SiC/Si(111) // Journal of crystal growth. – 2008. – V. 310. – I. 20. – pp. 4417–4423. https://doi.org/10.1016/j.jcrysgro.2008.07.063.
  21. Y. Cordier, J.-C. Moreno, N. Baron et al. Demonstration of AlGaN/GaN high-electron-mobility transistors grown by molecular beam epitaxy on Si(110) // IEEE Electron device letters. – 2008. – V. 29. – № 11. – pp. 1187–1189. doi: 10.1109/LED.2008.2005211.
  22. Z. Chen, Y. Pei, S. Newman et al. Growth of AlGaN/GaN heterojunction field effect transistors on semi-insulating GaN using an AlGaN interlayer // Appl. phys. lett. – 2009. – V. 94. – article ID 112108. https://doi.org/10.1063/1.3103210
  23. L. Guo, X. Wang, C. Wang et al. The influence of 1 nm AlN interlayer on properties of the Al0.3Ga0.7N/AlN/GaN HEMT structure // Microelectronics journal. – 2008. – V. 39. – I. 5. – pp. 777–781. https://doi.org/10.1016/j.mejo.2007.12.005.
  24. C. Wang, H.-T. Hsu, T.-J. Huang et al. Effect of AlN Spacer on the AlGaN/GaN HEMT Device Performance at Millimeter-Wave Frequencies // 2018 Asia-Pacific microwave conference (APMC). – 2018. – pp. 1208–1210. doi: 10.23919/APMC.2018.8617568
  25. X. Wang, G. Hu, Z. Ma et al. AlGaN/AlN/GaN/SiC HEMT structure with high mobility GaN thin layer as channel grown by MOCVD // Journal of crystal growth. – 2007. – V. 298. – pp. 835–839. https://doi.org/10.1016/j.jcrysgro.2006.10.219.
  26. R.S. Balmer, K.P. Hilton, K.J. Nash et al. Analysis of thin AlN carrier exclusion layers in AlGaN/GaN microwave heterojunction field-effect transistors // Semiconductor science and technology. – 2004. – V. 19. – № 6. – pp. L65–L67. doi: 10.1088/0268-1242/19/6/L02
  27. Ma Zhi-Yong, Wang Xiao-Liang, Hu Guo-Xin et al. Growth and Characterization of AlGaN/AlN/GaN HEMT structures with a compositionally step-graded AlGaN barrier layer // Chinese physics letters. – 2007. – V. 24. – № 6. – pp. 1705–1708.
  28. W. Xiaoliang, H. Guoxin, M. Zhiyong et al. MOCVD-grown AlGaN/AlN/GaN HEMT structure with high mobility GaN thin layer as channel on SiC // Chin. J. semicond. – 2006. – V. 27. – I. 9. – pp. 1521–1525.
  29. M. Gonschorek, J.-F. Carlin, E. Feltin et al. High electron mobility lattice-matched AlInN∕GaN field-effect transistor heterostructures // Appl. Phys. Lett. – 2006. – V. 89. – article ID 062106. https://doi.org/10.1063/1.2335390
  30. M. Hiroki, N. Maeda, T. Kobayashi, Fabrication of an InAlN/AlGaN/AlN/GaN heterostructure with a flat surface and high electron mobility // Applied Physics Express. – 2008. – V. 1. – № 11. – article ID 111102. https://doi.org/10.1143/APEX.1.111102
  31. J. Kuzmik, G. Pozzovivo, S. Abermann et al. Technology and performance of InAlN/AlN/GaN HEMTs with gate insulation and current collapse suppression using ZrO2 or HfO2 // IEEE Transactions on Electron Devices. – 2008. – V. 55. – № 3. – pp. 937–941. doi: 10.1109/TED.2007.915089.
  32. J. Guo, Y. Cao, C. Lian et al. Metal-face InAlN/AlN/GaN high electron mobility transistors with regrown ohmic contacts by molecular beam epitaxy // Phys. Status Solidi (A). – 2011. – V. 208. – № 7. – pp. 1617–1619. https://doi.org/10.1002/pssa.201001177
  33. Y. Yue, Z. Hu, J. Guo et al. Ultrascaled InAlN/GaN high electron mobility transistors with cutoff frequency of 400 GHz // Japanese Journal of Applied Physics. – 2013. – V. 52. – № 8S. – article ID 08JN14. https://doi.org/10.7567/JJAP.52.08JN14
  34. T. Han, S. Dun Y. Lu et al. 70-nm-gated InAlN/GaN HEMTs grown on SiC substrate with fT/fmax > 160 GHz // Journal of Semiconductors. – 2016. – V. 37. – № 2. – article number 024007. https://doi.org/10.1088/1674-4926/37/2/024007
  35. A. Malmros, J.-T. Chen, H. Hjelmgren et al. Enhanced mobility in InAlN/AlN/GaN HEMTs using a GaN interlayer // IEEE Transactions on Electron Devices. – 2019. – V. 66. – I.7. – pp. 2910–2915. doi: 10.1109/TED.2019.2914674
  36. F. Medjdoub, R. Kabouche, A. Linge et al. High electron mobility in high-polarization sub-10 nm barrier thickness InAlGaN/GaN heterostructure // Applied Physics Express. – 2015. – V. 8. – № 10. – article ID 101001. https://doi.org/10.7567/APEX.8.101001
  37. G. Zhu, K. Zhang, Y. Kong et al. High electron mobility in high-polarization sub-10 nm barrier thickness InAlGaN/GaN heterostructure // Applied Physics Express. – 2017. – V. 10. – № 11. – article ID 114101. https://doi.org/10.7567/APEX.10.114101
  38. J. Kotani, A. Yamada, T. Ohki et al. Recent advancement of GaN HEMT with InAlGaN barrier layer and future prospects of A1N-based electron devices // IEEE International Electron Devices Meeting (IEDM). – 2018. – pp. 30.4.1–30.4.4. doi: 10.1109/IEDM.2018.8614519
  39. I. Sanyal, Y.-C. Lee, Y.-C. Chen et al. Achieving high electron mobility in AlInGaN/GaN heterostructures: the correlation between thermodynamic stability and electron transport properties // Appl. Phys. Lett. – 2019. – V. 114. – article ID 222103. https://doi.org/10.1063/1.5090874
  40. S. Burnham, W. Doolittle, In situ growth regime characterization of AlN using reflection high energy electron diffraction // Journal of vacuum science & technology B. – 2006. – V. 24. – pp. 2100–2104.
  41. S. Burnham, G. Namkoong, K. Lee et al. Reproducible reflection high energy electron diffraction signatures for improvement of AlN using in situ growth regime characterization // Journal of Vacuum Science & Technology B. – 2007. – V. 25. – pp. 1009–1013.
  42. A.R. Smith, R.M. Feenstra, D.W. Greve et al. Determination of wurtzite GaN lattice polarity based on surface reconstruction // Appl. Phys. Lett. – 1998. – V. 72. – I.17 – pp. 2114–2116. https://doi.org/10.1063/1.121293
  43. S. Fernández-Garrido, G. Koblmüller, E. Calleja et al. In situ GaN decomposition analysis by quadrupole mass spectrometry and reflection high-energy electron diffraction // Journal of applied physics. – 2008. – V. 104. – article ID 033541 https://doi.org/10.1063/1.2968442
  44. A.S. Gusev, A.O. Sultanov, A.V. Katkov et al. Analysis of carrier scattering mechanisms in AlN/GaN HEMT heterostructures with an ultrathin AlN barrier // Russian Microelectronics. – 2024. – V. 53. – № 3. – pp. 252–259.
  45. I. Angelov, H. Zirath, N. Rosman, A new empirical nonlinear model for HEMT and MESFET devices // IEEE Transactions on microwave theory and techniques. – 1992. – V. 40. – № 12. – pp. 2258–2266
  46. K. Fujii, Y. Hara, F.M. Ghannouchi et al. A nonlinear GaAs FET model suitable for active and passive mm-wave applications. – 2000. – IEICE Trans. – V. E83-A. – № 2. – p. 228.
  47. D. Tsunvaza, R.V. Ryzhuk, I.S. Vasil’evskii et al. The design of nonlinear model of pseudomorphic 0,15 μm рHEMT AlGaAs/InGaAs/GaAs transistor // Russian microelectronics. – 2023. – V. 52. – № 3. pp. 160–166.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Зависимость ρs от ns для ГС с барьерными слоями различного состава: AlxGa1-xN (0,18 ≤ x ≤ 0,36) – коричневые маркеры; InхAl1-хN (х = 0,17–0,18) – красные маркеры; InAlGaN с различной мольной долей In – серые маркеры; AlN – голубые маркеры [2, 3, 6, 9–11, 13–39].

Скачать (90KB)
3. Рис. 2. Типичные картины ДОБЭ от исходной подложки (а) и экспериментальных ГС в направлении на стадии нуклеации (б); в процессе формирования GaN буфера (в); в случае остановки процесса роста GaN и снижения параметра Ts до 600°С (г).

Скачать (214KB)
4. Рис. 3. (а) зависимость подвижности 2DEG от параметра ; (б) зависимость слоевого сопротивления полной ГС от параметра .

Скачать (157KB)
5. Рис. 4. (а) топология тестовой структуры, (б) экспериментальная зависимость среднего (по выборке) тока утечки через тест мезаизоляции от параметра .

Скачать (224KB)
6. Рис. 5. (а) РЭМ изображение топологии тестового транзистора; (б) РЭМ изображение поперечного среза (ФИП) его затворной части (Т-образный затвор)

Скачать (321KB)
7. Рис. 6. Семейство выходных (DC) характеристик одного из тестовых транзисторов (при изменении напряжения на затворе UGS от – 7,0 до + 2,5 В) (а); типичные частотные зависимости модуля коэффициента передачи по току (|h21|) и максимально достижимого/стабильного коэффициента усиления по мощности (MAG/MSG) тестового транзистора (б).

Скачать (284KB)
8. Рис. 7. Топология 4-х (а) и 6-секционного (б) транзисторов с межсоединениями в виде воздушных мостов (изображения получены с помощью оптической микроскопии).

Скачать (269KB)
9. Рис. 8. S-параметры AlN/GaN HEMT в диапазоне частот 0,5–25,5 ГГц при UGS = –2,75 В и UDS = 5 В (сплошными линиями изображены измеренные характеристики, пунктирными – результаты моделирования).

Скачать (366KB)

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».