Estimation of Conformance Bands for Linear Regression with Correlated Input Data


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The problem of calculating the uncertainty bands for a linear regression with correlated initial data is considered. The conformance factors for regression uncertainty bands with different models of errors in the initial data are obtained by the Monte-Carlo method. The linear regression coefficients are estimated by the generalized method of least squares. The following models of measurement error are considered: Gaussian white noise, exponentially correlated noise, and flicker noise. A comparative analysis of the uncertainty bands of linear drift is conducted for these models.

作者简介

A. Stepanov

Mendeleev All-Russia Research Institute of Metrology (VNIIM)

Email: chunovkina@vniim.ru
俄罗斯联邦, St. Petersburg

A. Chunovkina

Mendeleev All-Russia Research Institute of Metrology (VNIIM)

编辑信件的主要联系方式.
Email: chunovkina@vniim.ru
俄罗斯联邦, St. Petersburg

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019