Estimation of Conformance Bands for Linear Regression with Correlated Input Data
- 作者: Stepanov A.V.1, Chunovkina A.G.1
-
隶属关系:
- Mendeleev All-Russia Research Institute of Metrology (VNIIM)
- 期: 卷 62, 编号 5 (2019)
- 页面: 410-414
- 栏目: Article
- URL: https://bakhtiniada.ru/0543-1972/article/view/246722
- DOI: https://doi.org/10.1007/s11018-019-01638-6
- ID: 246722
如何引用文章
详细
The problem of calculating the uncertainty bands for a linear regression with correlated initial data is considered. The conformance factors for regression uncertainty bands with different models of errors in the initial data are obtained by the Monte-Carlo method. The linear regression coefficients are estimated by the generalized method of least squares. The following models of measurement error are considered: Gaussian white noise, exponentially correlated noise, and flicker noise. A comparative analysis of the uncertainty bands of linear drift is conducted for these models.
作者简介
A. Stepanov
Mendeleev All-Russia Research Institute of Metrology (VNIIM)
Email: chunovkina@vniim.ru
俄罗斯联邦, St. Petersburg
A. Chunovkina
Mendeleev All-Russia Research Institute of Metrology (VNIIM)
编辑信件的主要联系方式.
Email: chunovkina@vniim.ru
俄罗斯联邦, St. Petersburg
补充文件
