Modeling, Reproduction, and Mapping of Geofields with and Without Measurement Noise. Part 3. Integral Equation, Radial Grid, and Soft Computing Methods


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The effectiveness of boundary integral equation and grid-free methods for radial grids, as well as solutions of classical and nonclassical modeling and recovery problems for geological fields are analyzed. It is shown that, as opposed to the methods employing a variational technique and radial basis neural networks, hybrid algorithms (fuzzy neural networks, genetic algorithms, and Kalman filter) for solving identification and recovery problems are more stable with respect to noise and give positive results even with conflicting data and significant measurement noise.

Авторлар туралы

A. Pashayev

National Academy of Aviation of Azerbaijan

Хат алмасуға жауапты Автор.
Email: sadixov@mail.ru
Әзірбайжан, Baku

R. Sadykhov

National Academy of Aviation of Azerbaijan

Email: sadixov@mail.ru
Әзірбайжан, Baku

S. Habibullayev

National Academy of Aviation of Azerbaijan

Email: sadixov@mail.ru
Әзірбайжан, Baku

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, 2017