Method of Synthesis of Quinoline Derivatives Based on Ethyl-3-(4-Methyl-2-Oxo-1,2-Dihydroquinoline-3-yl)Propanoates
- Authors: Aleksanyan I.L.1, Hambardzumyan L.P.1
-
Affiliations:
- Yerevan State University
- Issue: Vol 61, No 12 (2025)
- Pages: 1769-1774
- Section: ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ
- URL: https://bakhtiniada.ru/0514-7492/article/view/382050
- DOI: https://doi.org/10.7868/S3034630425120134
- ID: 382050
Cite item
Abstract
A convenient and accessible method was used to synthesize novel heterocyclic hybrid systems: 3-(2-(1H-benzo[d]imidazol-2-yl)ethyl)-4-methylquinolin-2(1H)-ones, 3-(2-(benzo[d]oxazol-2-yl)ethyl)-4-methylquinolin-2(1H)-ones, and 3-(2-(benzo[d]thiazol-2-yl)ethyl)-4-methylquinolin-2(1H)-ones. The synthesis was carried out by reacting ethyl 3-(4-methyl-2-oxo-1,2-dihydroquinolin-3-yl)propanoates, substituted in the benzene ring, with α-phenylenediamine, α-aminophenol, and α-aminobenzenedithiol.
About the authors
I. L. Aleksanyan
Yerevan State University
Email: aleksanyan@ysu.am
ORCID iD: 0000-0002-4039-2323
Armenia, Yerevan
L. P. Hambardzumyan
Yerevan State University
ORCID iD: 0000-0003-1210-0052
Armenia,Yerevan
References
- Khan S.J. Arch. Chem. Res. 2022, 6, 23. Available in: https://www.primescholars.com/archives-in-chemical-research.html
- Woods E. Am. J. Physiol., Biochem. Pharmacol. 2023, 13, 1. Available in: https://www.ajpbp.com/ajpbp-articles/organic-chemistry-the-basis-for-understanding-biological-substances.pdf
- Amin A., Qadir T., Sharma P.K., Jeelani I., Abe H. Open J. Med. Chem. 2022, 16, e187410452209010(1–27). https://doi.org/10.2174/18741045-v16-e2209010
- Asran M., El-Helw E.A.E, Azab M.E., Ramadan S.K., Helal M.H. J. Iran. Chem. Soc. 2023, 20, 3023–3032. https://doi.org/10.1007/s13738-023-02894-8
- Versha R., Singh L., Rana R., Bendi A. ChemistrySelect. 2022, 7, 46, e202203648. https://doi.org/10.1002/slct.202203648
- Li M., Chen X., Deng Y., Lu J. RSC Advances. 2021, 11, 38060–38078. https://doi.org/10.1039/D1RA06155K
- Matada В.S., Pattanashettar R., Yernale N.G. Bioorg. Med. Chem. 2021, 32, 115973–116098. https://doi.org/10.1016/j.bmc.2021.116098
- Ajani O.O., Iyaye S.T., Ademosun O.T. (Review Article) RSC Advances. 2022, 12, 18594–18614. https://doi.org/10.1039/D2RA02896D
- Panchal N.B., Vaghela V.M. Oriental J. Chem. 2023, 39 (3), 546–567. https://doi.org/10.13005/ojc/390303
- Ferreira L.M., García-García P., García P.A., Castro M.A. Eur. J. Pharm. Sci. 2025, 209, 107097. https://doi.org/10.1016/j.ejps.2025.107097
- Behera S., Mohanty P., Behura R., Nath B., Barick A.K., Jali B.R., Biointerface Res. Appl.Chem. 2022, 12 (5), 6078–6092. https://doi.org/10.33263/BRIAC125.60786092
- Mishra P., Kumar A., Sharma U.C., Saxena A., Prabahar A.E., Gupta S., Verma A.K. Int. J. Health Sci, 2022, 6 (S3), 2016–2040. https://doi.org/10.53730/ijhs.v6nS3.5918
- Hernández-Ayala L.F., Guzmán-López E.G., Galano A. Antioxidants. 2023, 12 (10), 1853 (1–17). https://doi.org/10.3390/antiox12101853
- Asran M., El-Helw E.A.E., Azab M.E., Ramadan S.K., Helal M.H. J. Iran. Chem. Soc. 2023, 20, 3023–3032. https://doi.org/10.1007/s13738-023-02894-8
- Abdanne W., Mulugeta E. RSC Advances. 2020, 10 (35), 20784–20793. https://doi.org/10.1039/D0RA03763J
- Ravindar L., Hasbullah S.A., Rakesh K.P., Raheem S., Agustar H.K., Ismail N., Ling L.Y., Hassan N.I. Eur. J. Med. Chem. 2024, 264, 116043. https://doi.org/10.1016/j.ejmech.2023.116043
- Saxena A., Majee S., Ray D., Saha B. Bioorg. Med. Chem. 2024, 103, 117681. https://doi.org/10.1016/j.bmc.2024.117681
- Lilienkamp A., Mato J., Wan B., Wang Y., Franzblau S.G., Kozikowski A.P. J. Med. Chem. 2009, 52 (7), 2109–2118. https://doi.org/10.1021/jm900003c
- Diaconu D., Antoci V., Mangalagiu V., Amariucai-Mantu D., Mangalagiu I.I. Sci. Reports. 2022, 12, 16988 (1–17). https://doi.org/10.1038/s41598-022-21435-6
- Khalifa Z., Upadhyay R., Kumari P., Patel B.A. Intech. Open. 2023, Available in: http://dx.doi.org/10.5772/intechopen.108949
- Khan Y., Iqbal S., Shah M., Maalik A., Hussain R., Khan S., Khan I., Pashameah R.A., Alzahrani E., Farouk A.E., Alahmdi M.I., Abd-Rabboh H.S.M. Front. Chem. 2022, 10, 995820 (1–11). https://doi.org/10.3389/fchem.2022.995820
- Santali E.Y. Egypt. J. Chem. 2023, 66 (7), 527–551. https://doi.org/0.21608/EJCHEM.2022.167867.7074
- Srinivasa S.B., Poojary B., Kalal B.S., Brahmavara U., Vaishali D., Das A.J., Kalenga T.M., Paidikondala M., Shankar M.K. Results in Chem. 2024, 9, 101631 (1–10). https://doi.org/10.1016/j.rechem.2024.101631
- Insuasty D., Vidal O., Bernal A., Marquez E., Guzman J., Insuasty B., Quiroga J., Svetaz L., Zacchino S., Puerto G., Abonia R. Antibiotics. 2019, 8 (4), 239 (1–11). https://doi.org/10.3390/antibiotics8040239
- Chau N.B., Vu T.K., Lett. Drug Des. Discov. 2024, 21 (18), e15701808353391, 4148–4160. https://doi.org/10.2174/0115701808353391241106042408
- Rodríguez P.N., Ghashghaei O., Bagán A., Escolano C. R. Biomedicines. 2022, 10 (7), 1488 (1–18), https://doi.org/10.3390/biomedicines10071488
- Patel D.B., Rajani P.D., Rajani S.D, Patel H.D. J. Heterocycl. Chem. 2020, 57, 1524–1544, https://doi.org/10.1002/jhet.3848
- Patel A., Patel S., Mehta M., Patel Y., Patel R., Shah D., Patel D., Shah U., Patel M., Patel S., Solanki N., Bambharoliya T., Patel S., Nagani A., Patel H., Vaghasiya J., Shah H., Prajapati B., Rathod M., Bhimani B., Patel R., Bhavsar V., Rakholiya B., Patel M., Patel P. Green Chem. Lett. Rev. 2022, 15 (2), 337–372. https://doi.org/10.1080/17518253.2022.2064194
- T. Grover, Singh T., Vaja N., Maulikkumar, Curr. Org. Chem. 2023, 27, 1381–1392. https://doi.org/10.2174/0113852728268691231009063856
- Aлексанян И.Л., Пивазян А.А., Aмбарцумян Л.П. Ученые записки Eреванского гос. университета хим. и биол. 2011, 1, 61–64. Доступен по http://www.old.ysu.am/files/NEW%20DERIVATIVES%20OF%20QUINOLINES%20ON%20THE%20BASE%20OF.pdf
- Aleksanyan I.L., Hambardzumyan L.P. Russ. J. Org. Chem. 2024, 60 (6), 1022–1027. https://doi.org/10.1134/S107042802406006X
Supplementary files


