The Reaction of Hydrogenated 3,3-Dimethylisoquinolines with Hexamethylenediisocyanate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

By reaction of 1-R-3,3-dimethyl-1,2,3,4-terahydroisoquinolines (R=H, Me) with hexamethylenediisocyanate (HDI) the corresponding N,N′-(hexane-1,6-diyl)bis(1-R-3,3-dimethyl-3,4-dihydroisoquinolin-2(1H)-carboxamides have been synthesized. The reaction of HDI with 1,3,3-trimethyl-3,4-dihydroisoquinoline leads to (2Z,2Z′)-N,N′-(hexane-1,6-diyl)bis[2-(3,3-dimethyl-3,4-dihydroisoquinolin-1(2H)-ylidene) acetamide, the similar product have been obtained for the corresponding benzo[f]isoquinoline. The both amides bis-derivatives were obtained earlier by direct counter synthesis by Ritter cyclisation. When HDI reacted with enaminoamides of the 6,7-diethoxy-1-methylidene-3,3-dimethyl-1,2,3,4-tetrahydroisoquinoline series, carbamylation occurred at the β-carbon atom of the enamine fragment, resulting in the formation of corresponding bis-derivatives of malonic acid diamide.

About the authors

N. N Pershina

FSEBI of the Ministry of Health of RF "Perm State Pharmaceutical Academy"

ORCID iD: 0000-0002-1422-2902
Perm, Russia

A. G Mikhailovskii

FSEBI of the Ministry of Health of RF "Perm State Pharmaceutical Academy"

Email: neorghim@pfa.ru
ORCID iD: 0000-0002-5104-4877
Perm, Russia

References

  1. Шкляев В.С., Александров Б.Б., Михайловский А.Г., Вахрин М.И. ХГС. 1989, 9, 1239–1242.https://doi.org/10.1007/s11094-019-02028-6
  2. Михайловский А.Г., Лихтенштейн Е.С., Першина Н.Н., Колотыркина Н.Г. ЖОрХ. 2022, 58, 82–88. https://doi.org/10.1134/s1070428022010080
  3. Kupchan S.M., Liepa A.J., Baxter R.L., Hihtz H.P. J. Org. Chem. 1973, 38, 1846–1852. https://doi.org/10.1021/jo00950a016
  4. Kupchan S.M., Alland A.J. J. Med. Chem. 1973, 16, 913–917. https://doi.org/10.1021/jm00266a010
  5. Толкачев О.Н., Вичканова С.А., Макарова Л.В., Найдович Л.П. Фармация, 1978, 27 (2), 23–26.
  6. Избранные методы синтеза и модификации гетероциклов. Ред. Карцев В.Г. М.: ICSPF, 2011, 8 (Природные изохинолины: химия и биологическая активность).
  7. Толкачев О.Н., Накова Е.П., Евстигнеева Е.П. Уст. хим. 1980, 49, 1617–1643. https://doi.org/10.1007/10.1070/RC1980v049n08ABEH002505
  8. Сыропятов Б.Я., Горбунов А.А., Шкляев В.С., Шкляев Ю.В., Бороненкова Е.С. Хим.-фарм. ж. 1996, 30 (11), 13–14. https://doi.org/10.1007/BF02223740
  9. Горбатенко В.И., Журавлев Е.З., Самарай Л.И. Изоцианаты. Методы синтеза и физико-химические свойства алкил,- арил- и гетерилизоцианатов. Киев: Наукова думка, 1987, 294.
  10. Ионин Б.И., Ершов Б.А., Кольцов А.И. ЯМР-спектроскопия в органической химии, Л.: Химия, 1983, 157.
  11. Шкляев В.С., Александров Б.Б., Гаврилов М.С., Михайловский А.Г., Вахрин М.И. ХГС. 1988, 7, 939–942. https://doi.org/10.1007/BF00633173
  12. Михайловский А.Г., Александров Б.Б., Вахрин М.И. ХГС. 1993, 6, 780–783. https://doi.org/10.1007/BF00531544
  13. Шкляев В.С., Александров Б.Б., Леготкина Г.И., Вахрин М.И., Гаврилов М.С., Михайловский А.Г. ХГС. 1983, 1560. https://doi.org/10.1007/BF00515370
  14. Александров Б.Б., Шкляев В.С., Шкляев Ю.В. ХГС. 1992, 28, 375–376. https://doi.org/10.1007/BF00529376
  15. Михайловский А.Г., Лихтенштейн Е.С., Рудакова И.П., Старкова А.В., Першина Н.Н. Хим.-фарм. ж. 2021, 55 (7), 8–13. https://doi.org/10.1007/s11094-021-02472-3

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).