Thermal Isomerization of 6 π-Electron Five-Membered Aromatic heterocycles C4H3FX (X = NH, O, S)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Based on the analysis of isospectral molecular graphs, possible spatial structures of the transition states of thermal isomerization reactions of C4H3FX (X = NH, O, S) molecules in an inert atmosphere were determined. The formation of transition states of aromatic systems is provided by the stabilization effect of fragmented parts of the initial conjugated π-electron system. The structural and energetic characteristics of the ground and transition states of C4H3FX (X = NH, O, S) molecules were calculated using the DFT/B3LYP/6-31G(d) method. The proposed pathways of thermal isomerization of 2-fluoropyrrole, 2-fluorofuran, and 2-fluorothiophene molecules were constructed, and the mechanisms of [2,3]-substituent rearrangements in the considered heterocycles were determined. The studies showed that thermal [2,3] rearrangement reactions of 2-fluoropyrrole, 2-fluorothiophene, and 2-fluorofuran proceed via the formation of non-aromatic isomers belonging to the Dewar benzene structural type.

About the authors

O. B Tomilin

National Research Ogarev Mordovia State University

ORCID iD: 0000-0002-1570-230X
Saransk, Russia

L. V Fomina

National Research Ogarev Mordovia State University

ORCID iD: 0000-0002-3971-6714
Saransk, Russia

O. V Boyarkina

National Research Ogarev Mordovia State University

ORCID iD: 0000-0001-7431-0405
Saransk, Russia

E. V Rodionova

National Research Ogarev Mordovia State University

Email: rodionova_j87@mail.ru
ORCID iD: 0000-0001-7921-2732
Saransk, Russia

References

  1. Scott L.T., Highsmith J.R. Tetrahedron Lett. 1982, 21 (49), 4703–4706. https://doi.org/10.1016/0040-4039(80)88098-1
  2. Родионова Е.В., Томилин О.Б., Фомина Л.В. ЖОрХ. 2021, 57, 135–142. https://doi.org/10.1134/S1070428021020019
  3. Tomilin O.B., Fomina L.V., Rodionova E.V. Russ. J. Org. Chem. 2024, 60, 1058–1065. https://doi.org/10.1134/S1070428024060113
  4. D'Auria M. J. Org. Chem. 2000, 65 (8), 2494–2498. https://doi.org/10.1021/jo991655p
  5. Kobayashi Y., Ando A, Kawada K, Kumadaki I. J. Org. Chem. 1980, 45, 2968–2970. doi: 10.1021/jo01303a011
  6. Barltrop J.A., Day A., Colin W., Robert W. J. Chem. Soc., Chem. Commun. 1978, 3, 131–133. https://doi.org/10.1039/c39780000131
  7. Van Tamelen E.E., Whitesides T.H. Am. Chem. Soc. 1971, 93 (23), 6129–6140. doi: 10.1021/ja00752a025
  8. Kellogg R.M. Tetrahedron Lett. 1972, 13 (15), 1429– 1432. doi: 10.1016/s0040-4039(01)84646
  9. Rendall W.A., Torres M, Lown E.M., Strausz O.P. Rev. Chem. Intermed. 1986, 6, 335–364. https://doi.org/10.1007/BF0315566
  10. Granovsky A.A. Firefly Version 8. http://classic.chem.msu.su/gran/firefly/index.html.
  11. Moran D., Simmonett A.C., Leach F.E., Allen W.D., Scleyer P.v.R., Schaefer H.F. J. Am. Chem. Soc. 2006, 128 (29), 9342–9343. https://doi.org/10.1021/ja0630285

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).