Methods for the Synthesis of Nitroquinolines
- Authors: Ustinov I.I.1
-
Affiliations:
- Tula State Lev Tolstoy Pedagogical University
- Issue: Vol 61, No 12 (2025)
- Pages: 1655-1673
- Section: ОБЗОРНАЯ СТАТЬЯ
- URL: https://bakhtiniada.ru/0514-7492/article/view/382031
- DOI: https://doi.org/10.7868/S3034630425120016
- ID: 382031
Cite item
Abstract
The review systematizes literature data on methods for obtaining quinoline nitro derivatives over the past 10–15 years. The material is classified by types of chemical reactions.
About the authors
I. I. Ustinov
Tula State Lev Tolstoy Pedagogical University
Email: bai2688@yandex.ru
ORCID iD: 0000-0002-6334-3866
Russia, 300026 Tula
References
- Мамедова В.Л., Мамедова С.В., Коршин Д.Э., Гаврилова Е.Л., Мамедов В.А. Успехи хим. 2025, 94, RCR5167. https://doi.org/10.59761/RCR5167
- Starosotnikov A., Bastrakov M. Pharmaceuticals. 2025, 18, 692. https://doi.org/10.3390/ph18050692
- Huang J., Ding F., Rojsitthisak P., He F.-S., Wu J. Org. Chem. Front. 2020, 7, 2873–2898. https://doi.org/10.1039/d0qo00563k
- Patel S.S., Patel D.B., Patel H.D. ChemistrySelect. 2021, 6, 1–21. https://doi.org/10.1002/slct.2020046
- Bastrakov M.A., Starosotnikov A.M. Pharmaceuticals. 2022, 15, 705. https://doi.org/10.3390/ph15060705
- Злотин С.Г., Далингер И.Л., Махова Н.Н., Тартаковский В.А. Успехи хим. 2020, 89, 1–45. https://doi.org/10.1070/RCR4908
- Коротаев В.Ю., Кутяшев И.Б., Барков А.Ю., Сосновских В.Я. Успехи хим. 2019, 88, 27–58. https://doi.org/10.1070/RCR4840
- Пелипко В.В., Байчурин Р.И., Макаренко С.В. Изв. АН. Сер. хим. 2019, 10, 1821–1837. https://doi.org/10.1007/s11172-019-2631-z
- Olender D., Żwawiak J., Zaprutko L. Pharmaceuticals. 2018, 11, 54. https://doi.org/10.3390/ph11020054
- Patterson S., Wyllie S. Trends in Parasitol. 2014, 30, 289–298. https://doi.org/10.1016/j.pt.2014.04.003
- Yan G., Yang M. Org. Biomol. Chem. 2013, 11, 2554–2566. https://doi.org/10.1039/C3OB27354G
- Sydnes M.O. Studies in Nat. Prod. Chem. 2020, 64, 59–84. https://doi.org/10.1016/B978-0-12-817903-1.00002-4
- Zigmundo G.C. de O., Schuch L.F., Schmidt T.R., Silveira F.M., Martins M.A.T., Carrard V.C., Martins M.D., Wagner V.P. Pathology – Research and Practice. 2022, 236, 153970. https://doi.org/10.1016/j.prp.2022.153970
- Paloque L., Verhaeghe P., Casanova M., Castera-Ducros C., Dumètre A., Mbatchi L., Hutter S., Kraiem-M’Rabet M., Laget M., Remusat V., Rault S., Rathelot P., Azas N., Vanelle P. Eur. J. Med. Chem. 2012, 54, 75–86. https://doi.org/10.1016/j.ejmech.2012.04.029
- Arasakumar T., Mathusalini S., Gopalan S., Shyamsivappan S., Ata A., Mohan P.S. Bioorg. Med. Chem. Lett. 2017, 27, 1538–1546. https://doi.org/10.1016/j.bmcl.2017.02.042
- Saral A., Sudha P., Muthu S., Irfan A. J. Mol. Struct. 2022, 1247, 131414. https://doi.org/10.1016/j.molstruc.2021.131414
- Santos G.C., Rodrigues J.L., Moreno V.F., Silva-Filho L.C. J. Mol. Struct. 2021, 1235, 130260. https://doi.org/10.1016/j.molstruc.2021.130260
- Pedron J., Boudot C., Hutter Sé., Bourgeade-Delmas S., Stigliani J.-L., Sournia-Saquet A., Moreau A., Boutet-Robinet E., Paloque L., Mothes E., Laget Michè., Vendier L., Pratviel Geneviè., Wyllie S., Fairlamb A., Azas N., Courtioux B., Valentin A., Verhaeghe P. Eur. J. Med. Chem. 2018, 155, 135–152. https://doi.org/10.1016/j.ejmech.2018.06.001
- Karakaya İ. J. Turk. Chem. Soc., Sect. A: Chem. 2022, 9, 85–114. https://doi.org/10.18596/jotcsa.1012453
- Petit M., Tran C., Roger T., Gallavardin T., Dhimane H., Palma-Cerda F., Blanchard-Desce M., Acher F.C., Ogden D., Dalko P.I. Org. Lett. 2012, 14, 6366–6369. https://doi.org/10.1021/ol3031704
- Chen H., Li P., Wang M., Wang L. Eur. J. Org. Chem. 2018, 2018, 2091–2097. https://doi.org/10.1002/ejoc.201800389
- Tamura M., Ogata H., Ishida Y., Takahashi Y. Tetrahedron Lett. 2017, 58, 3808–3813. https://doi.org/10.1016/j.tetlet.2017.08.041
- Zibaseresht R., Karimi P., Mohit-Azar S., Amirloo M.R., Azimi M. Int. J. Chem. Res. 2013, 5, 153–158. https://doi.org/10.9735/0975-3699.5.1.153-158
- Sosič I., Mitrović A., Ćurić H., Knez D., Brodnik Žugelj H., Štefane B., Kos J., Gobec S. Bioorg. Med. Chem. Lett. 2018, 28, 1239–1247. https://doi.org/10.1016/j.bmcl.2018.02.042
- Chen X., Kobiro K., Asahara H., Kakiuchi K., Sugimoto R., Saigo K., Nishiwaki N. Tetrahedron. 2013, 69, 4624–4630. https://doi.org/10.1016/j.tet.2013.04.008
- O'Brien N.J., Brzozowski M., Wilson D.J.D., Deady L.W., Abbott B.M. Bioorg. Med. Chem. 2014, 22, 3781–3790. https://doi.org/10.1016/j.bmc.2014.04.037
- Todorov A.R., Aikonen S., Muuronen M., Helaja J. Org. Lett. 2019, 21, 3764–3768. https://doi.org/10.1021/acs.orglett.9b01205
- Thorat S.A., Lee Y., Jung A., Ann J., Ahn S., Baek J., Zuo D., Do N., Jeong J.J., Blumberg P.M., Esch T.E., Turcios N.A., Pearce L.V., Ha H.-J., Yoo Y.D., Hong S., Choi S., Lee J. J. Med. Chem. 2021, 64, 370–384. https://doi.org/10.1021/acs.jmedchem.0c00982
- Zhang L., Cheng C., Li J., Wang L., Chumanevich A.A., Porter D.C., Mindich A., Gorbunova S., Roninson I.B., Chen M., McInnes C.J.Med.Chem.2022,65, 3420–3433. https://doi.org/10.1021/acs.jmedchem.1c01951
- Hudson S.A., McLean K.J., Surade S., Yang Y.-Q., Leys D., Ciulli A., Munro A.W., Abell C. Angew. Chem. Int. Ed. 2012, 51, 1–7. https://doi.org/10.1002/anie.201202544
- Song J., Zhu Y., Zu W., Duan C., Xu J., Jiang F., Wang X., Li, S., Liu C., Gao Q., Li H., Zhang Y., Tang W., Lu T., Chen Y. Bioorg. Med. Chem. 2021, 29, 115856. https://doi.org/10.1016/j.bmc.2020.115856
- Scott D.A., Hatcher J.M., Liu H., Fu M., Du G., Fontan L., Us I., Casalena G., Qiao Q., Wu H., Melnick A., Gray N.S. Bioorg. Med. Chem. Lett. 2019, 29, 1694–1698. https://doi.org/10.1016/j.bmcl.2019.05.040
- Wilson D.S., Hirosue S., Raczy M.M., BonillaRamirez L., Jeanbart L., Wang R., Kwissa M., Franetich J.-F., Broggi M.A.S., Diaceri G., Quaglia-Thermes X., Mazier D., Swartz M.A., Hubbell J.A. Nat. Mater. 2019, 18, 175–185. https://doi.org/10.1038/s41563-018-0256-5
- Sosic I., Mirkovic B., Arenz K., Stefane B., Kos J., Gobec S. J. Med. Chem. 2013, 56, 521–533. https://doi.org/10.1021/jm301544x
- Starosotnikov A.M., Nikol'skiy V.V., Borodulya A.N., Kachala V.V., Bastrakov M.A., Solkan V.N., Shevelev S.A. Asian J. Org. Chem. 2016, 5, 685–690. https://doi.org/10.1002/ajoc.201600065
- Haggag S.M.S., Farag A.A.M., Abdel Refea M. Thin Solid Films. 2014, 566, 38–44. https://doi.org/10.1016/j.tsf.2014.07.008
- Устинов И.И., Хлытин Н.В., Атрощенко Ю.М., Шахкельдян И.В. ЖОрХ. 2020, 56, 649–652. https://doi.org/10.1134/S1070428020040259
- Saroa R., Kaushik D., Bagai U., Kaur S., Salunke D.B. Bioorg. Med. Chem. Lett. 2019, 29, 1099–1105. https://doi.org/10.1016/j.bmcl.2019.02.029
- Kayarmar R., Nagaraja G.K., Bhat M., Naik P., Rajesh K.P., Shetty S., Arulmoli T. Med. Chem. Res. 2014, 23, 2964–2975. https://doi.org/10.1007/s00044-013-0885-9
- Мокров Г.В., Воронина Т.А., Литвинова С.А., Ковалев И.Г., Неробкова Л.Н., Дурнев А.Д., Гудашева Д.А., Середенин С.Б. Хим.-фарм. ж. 2019, 53, 3–9. https://doi.org/10.1007/s11094-019-01978-1
- Mokrov G.V., Litvinova S.A., Voronina T.A., Nerobkova L.N., Kutepova I.S., Kovalev I.G., Gudasheva T.A., Durnev A.D. Med. Chem. Res. 2019, 28, 1901–1911. https://doi.org/10.1007/s00044-019-02422-5
- Kaneko D., Ninomiya M., Yoshikawa R., Ono Y., Sonawane A.D., Tanaka K., Nishina A., Koketsu M. Bioorg. Chem. 2020, 104, 104293. https://doi.org/10.1016/j.bioorg.2020.104293
- Audisio D., Messaoudi S., Cojean S., Peyrat J.-F., Brion J.-D., Bories C., Huteau F., Loiseau P.M., Alami M. Eur. J. Med. Chem. 2012, 52, 44–50. https://doi.org/10.1016/j.ejmech.2012.03.003
- Albin T.J., Tom J.K., Manna S., Gilkes A.P., Stetkevich S.A., Katz B.B., Supnet M., Felgner J., Jain A., Nakajima R., Jasinskas A., Zlotnik A., Pearlman E., Davies D.H., Felgner P.L., Burkhardt A.M., Esser-Kahn A.P. ACS Cent. Sci. 2019, 5, 1137–1145. https://doi.org/10.1021/acscentsci.8b00823
- Gao D., Xiao Q., Zhang M., Li Y. Bioorg. Med. Chem. 2016, 24, 2549–2558. https://doi.org/10.1016/j.bmc.2016.04.022
- He Y., Zhao N., Qiu L., Zhang X., Fan X. Org. Lett. 2016, 18, 6054–6057. https://doi.org/10.1021/acs.orglett.6b02998
- Wang Y., Yu F., Han X., Li M., Tong Y., Ding J., Hou H. Inorg. Chem. 2017, 56, 5953–5958. https://doi.org/10.1021/acs.inorgchem.7b00653
- Whiteoak C.J., Planas O., Company A., Ribas X. Adv. Synth. Catal. 2016, 358, 1679–1688. https://doi.org/10.1002/adsc.201600161
- Khan B., Khan A.A., Bora D., Verma D., Koley D. ChemistrySelect. 2017, 2, 260–264. 10.1002/slct.201601917
- Zhu X., Qiao L., Ye P., Ying B., Xu J., Shen C., Zhang P. RSC Adv. 2016, 6, 89979–89983 https://doi.org/10.1039/C6RA19583K
- Hernando E., Castillo R.R., Rodríguez N., Gómez A.R., Carretero, J.C. Chem. Eur. J. 2014, 20, 1–7. https://doi.org/10.1002/chem.201404000
- Mondal S., Samanta S., Hajra A. Adv. Synth. Catal. 2018, 360, 1026–1031. https://doi.org/10.1002/adsc.201701555
- Zhao J., Li P., Xia C., Li F. RSC Adv. 2015, 5, 32835–32838. https://doi.org/10.1039/C5RA04632G
- Боровлева А.А., Авакян Е.К., Амангазиева Г.А., Демидов О.П., Побединская Д.Ю., Ермоленко А.П., Ларин А.Н., Боровлев И.В. ХГС. 2022, 4/5 235–242. https://doi.org/10.1007/s10593-022-03077-8
- Романов В.В., Нижник Я.П., Фофанов А.Д. ЖСХ. 2015, 56, 381–386. https://doi.org/10.1134/s0022476615020237
- Sarmah B.K., Konwar M., Bhattacharyya D., Adhikari P., Das A. Adv. Synth. Catal. 2019, 361, 5616–5625. https://doi.org/10.1002/adsc.201901103
- Kokatla H.P., Yoo E., Salunke D.B., Sil D., Ng C.F., Balakrishna R., Malladi S.S., Fox L.M., David S.A. Org. Biomol. Chem. 2013, 11, 1179–1198. https://doi.org/10.1039/C2OB26705E
- Cai R., Wang L.-N., Fan J.-J., Geng S.-Q., Liu Y.-M. Bioorg. Chem. 2019, 93, 103328. https://doi.org/10.1016/j.bioorg.2019.103328
- Zhu J., Wang L.-N., Cai R., Geng S.-Q., Dong Y.-F., Liu Y.-M. Bioorg. Med. Chem. Lett. 2019, 29, 1325–1329. https://doi.org/10.1016/j.bmcl.2019.03.050
- Liu C., Wang L.-N., Liu Y.-M. Int. J. Mol. Sci. 2022, 23, 11231. https://doi.org/10.3390/ijms231911231
- Sun Q.-Z., Lin G.-F., Li L.-L., Jin X.-T., Huang L.-Y., Zhang G., Yang W., Chen K., Xiang R., Chen C., Wei Y.-Q., Lu G.-W., Yang S.-Y. J. Med. Chem. 2017, 60, 6337–6352. https://doi.org/10.1021/acs.jmedchem.7b00665
- Ma X.-D., Qiu N. Yang B., He Q.-J., Hu Y.-Z. Med. Chem. Commun. 2016, 7, 297–310. https://doi.org/10.1039/C5MD00401B
- Zheng L., Zeng Z., Yan Q., Jia F.-C., Jia L., Chen Y. Adv. Synth. Catal. 2018, 360, 4037–4042. https://doi.org/10.1002/adsc.201800773
- Awasthi A., Yadav P., Yadav S., Tiwari D.K. Adv. Synth. Catal. 2022, 364, 41–46. https://doi.org/10.1002/adsc.202100861
- Luo H., Yan X., Chen L., Li Y., Liu N., Yin G. Eur. J. Org. Chem. 2016, 2016, 1702–1707. https://doi.org/10.1002/ejoc.201501618
- Kim H., Kim S.-G. Tetrahedron Lett. 2015, 56, 4819–4823. https://doi.org/10.1016/j.tetlet.2015.06.071
- Suresh K.A., Prabhakar R.T., Madhavachary R., Ramachary D.B. Org. Biomol. Chem. 2016, 14, 5494–5499. https://doi.org/10.1039/C5OB02178B
- Lee Y., Kim S.-G. J. Org. Chem. 2014, 79, 8234−8243. https://doi.org/10.1021/jo501406v
- Ramachary D.B., Shruthi K.S., Madhavachary R. Eur. J. Org. Chem. 2015, 2015, 6413–6418. https://doi.org/10.1002/ejoc.201500994
- Rode N., Arcadi A., Chiarini M., Marinelli F. Synthesis. 2017, 49, 2501–2512. https://doi.org/10.1055/s-0036-1588147
- Symeonidis T.S., Lykakis I.N., Litinas K.E. Tetrahedron. 2013, 69, 4612–4616. https://doi.org/10.1016/j.tet.2013.04.026
- Jiang Y.-B., Zhang W.-S., Cheng H.-L., Liu Y.-Q., Yang R. Chin. Chem. Lett. 2014, 25, 779–782. https://doi.org/10.1016/j.cclet.2014.03.011
- Santos G.C.d., Moreno V.F., Oshiro P.B., da SilvaFilho L.C. Tetrahedron. 2018, 74, 6144–6149. https://doi.org/10.1016/j.tet.2018.09.003
- Santos G.C.d., de Andrade Bartolomeu A., Ximenes V.F., Silva-Filho L.C.d. J Fluoresc. 2017, 27, 271–280. https://doi.org/10.1007/s10895-016-1954-5
- Andrade A.d., Santos G.C.d., Silva-Filho L.C.d. J. Heterocycl. Chem. 2015, 52, 273– 277. https://doi.org/10.1002/jhet.1980
- Zhang L., Wu B., Zhou Y., Xia J., Zhou S., Wang S. Chin. J. Chem. 2013, 31, 465–471. https://doi.org/10.1002/cjoc.201300047
- Вершинина И.А., Горнухина О.В., Любимова Т.В., Голубчиков О.А., Семейкин А.С. Росс. хим. ж. 2014, 58, 85–89. https://doi.org/10.1134/S1070363216090383
- Lüdtke C., Haupt A., Wozniak M., Kulak N. J. Fluor. Chem. 2017, 193, 98–105. https://doi.org/10.1016/j.jfluchem.2016.11.016
- Saggadi H., Luart D., Thiebault N., Polaert I., Estel L., Len C. RSC Adv. 2014, 4, 21456–21464. https://doi.org/10.1039/C4RA00758A
- Lamberth C., Kessabi F.M., Beaudegnies R., Quaranta L., Trah S., Berthon G., Cederbaum F., Vettiger T., Rasanna CS. Synlett. 2014, 25, 858–862. https://doi.org/10.1055/s-0033-1340670
- Laras Y., Hugues V., Chandrasekaran Y., Blanchard-Desce M., Acher F.C., Pietrancosta N. J. Org. Chem. 2012, 77, 8294−8302. https://doi.org/10.1021/jo301652j
- Денисов В.Я., Грищенкова Т.Н., Ткаченко Т.Б., Лузгарев С.В. ЖОрХ. 2016, 52, 1806–1812. https://doi.org/10.1134/S1070428016120150
- Mehedi Md S. Al, Tepe J.J. J. Org. Chem. 2020, 85, 6741–6746. https://doi.org/10.1021/acs.joc.0c00803
- Bao L., Liu J., Xu L., Hu Z., Xu X. Adv. Synth. Catal. 2018, 360, 1870–1875. https://doi.org/10.1002/adsc.201800152
- Wang L., Ferguson J., Zeng F. Org. Biomol. Chem. 2015, 13, 11486–11491. https://doi.org/10.1039/C5OB01659B
- Sakai N., Tamura K., Shimamura K., Ikeda R., Konakahara T. Org. Lett. 2012, 14, 836–839. https://doi.org/10.1021/ol203360g
- Tóth F., Cseh E.K., Vécsei L. Int. J. Mol. Sci. 2021, 22, 403. https://doi.org/10.3390/ijms22010403
- Li X., Deng X., Coyne A.G., Srinivasan R. Chem. Eur. J. 2019, 25, 8018–8023. https://doi.org/10.1002/chem.201901633
- Manna S., Maity S., Rana S., Agasti S., Maiti D. Org. Lett. 2012, 14, 1736–1739. https://doi.org/10.1021/ol300325t
- Chatterjee N., Bhatt D., Goswami A. Org. Biomol. Chem. 2015, 13, 4828–4832. https://doi.org/10.1039/C5OB00337G
- Amal Joseph P.J., Priyadarshini S., Lakshmi Kantam M., Maheswaran H. Tetrahedron Lett. 2012, 53, 1511–1513. https://doi.org/10.1016/j.tetlet.2012.01.056
- Priyadarshini S., Amal Joseph P.J., Kantam M.L., Sreedhar B. Tetrahedron. 2013, 69, 6409–6414. https://doi.org/10.1016/j.tet.2013.05.102
- Wu C., Bian Q., Ding T., Tang M., Zhang W., Xu Y., Liu B., Xu H., Li H.-B., Fu H. ACS Catal. 2021, 11, 9561–9568. https://doi.org/10.1021/acscatal.1c02272
- Azad C.S., Balaramnavar V.M., Khan I.A., Doharey P.K., Saxena J.K., Saxena A.K. RSC Adv. 2015, 5, 82208–82214. https://doi.org/10.1039/C5RA18036H
- Azad C.S., Narula A.K.RSCAdv.2016,6, 19052–19059. https://doi.org/10.1039/C5RA26909A
- Agasti S., Maiti S., Maity S., Anniyappan M., Talawar M.B., Maiti D. Polyhedron. 2019, 172, 120–124. https://doi.org/10.1016/j.poly.2019.04.005
- Reddy K.R., Maheswari C.U., Venkateshwar M., Kantam M.L. Adv. Synth. Catal. 2009, 351, 93–96. https://doi.org/10.1002/adsc.200800641
- Antoniak D., Michał Barbasiewicz M. Org. Lett. 2022, 24, 516–519. https://doi.org/10.1021/acs.orglett.1c03920
- Devkar R.U., Rao D.P., Gokavarapu K., Samala S.R.K. Asian J. Res. Chem. 2019, 12, 69–70. https://doi.org/10.5958/0974-4150.2019.00015.4
- Toba O.T., Chris O.U., Izuchukwu U.D. Orient. J. Chem. 2015, 31, 371–378. https://doi.org/10.13005/ojc/310144
- Godwin-Nwakwasi E.U., Okoro U.C., Ijeomah A.O., Agbo I., Ezeokonkwo M.A. Asian J. Chem. 2017, 29, 742–748. https://doi.org/10.14233/ajchem.2017.20220
- Egu S.A., Okoro U.S., Onoabedje E.A. J. Heterocycl. Chem. 2017, 54, 1572–1577. https://doi.org/10.1002/jhet.2745
- Wei Z., Shao F., Wang J. Chin. J. Catal. 2019, 40, 980–1002. https://doi.org/10.1016/S1872-2067(19)63336-X
- Bera A., Bera S., Banerjee D. Chem. Commun. 2021, 57, 13042–13058. https://doi.org/10.1039/D1CC04919D
- Tan K.C., He T., Chua Y.S., Chen P. J. Phys. Chem. C. 2021, 125, 18553–18566. https://doi.org/10.1021/acs.jpcc.1c04783
- Tuo X., Chen S., Jiang P., Ni P., Wang X., Deng G.-J. RSC Adv. 2020, 10, 8348–8351. https://doi.org/10.1039/C9RA10964A
- Damodara D., Arundhathi R., Likhar P.R. Adv. Synth. Catal. 2014, 356, 189–198. https://doi.org/10.1002/adsc.201300453
- Cui X., Li Y., Bachmann S., Scalone M., Surkus A.-E., Junge K., Topf C., Beller M. J. Am. Chem. Soc. 2015, 137, 10652–10658. https://doi.org/10.1021/jacs.5b10746
- Zheng M., Shi J., Yuan T., Wang X. Angew. Chem. Int. Ed. 2018, 57, 5487–5491. https://doi.org/10.1002/anie.201800319
- Sahoo M.K., Jaiswal G., Rana J., Balaraman E. Chem. Eur. J. 2017, 23, 14167–14172. https://doi.org/10.1002/chem.201703642
- Wu T., Li S., Liu S., Cheong W.-C., Peng C., Yao K., Li Y., Wang J., Jiang B., Chen Z., Chen Zh., Wei X., Wu K. Nano Res. 2022, 15, 3980–3990. https://doi.org/10.1007/s12274-022-4091-2
- Echevarría I., Vaquero M., Manzano B.R., Jalón F.A., Quesada R., Espino G. Inorg. Chem. 2022, 61, 6193–6208. https://doi.org/10.1021/acs.inorgchem.2c00358
- Sun K., Shan H., Ma R., Wang P., Neumann H., Lu G.-P., Beller M. Chem. Sci. 2022, 13, 6865–6872. https://doi.org/10.1039/D2SC01838A
- Liu J.-J., Guo F.-H., Cui F.-J., Zhu J.-H., Liu X.-Y., Ullah A., Wang X.-C., Quan Z.-J. New J. Chem. 2022, 46, 1791–1799. https://doi.org/10.1039/D1NJ05411B
- Yoo H.-S., Yang Y.-S., Kim S.L., Son S.H., Jang Y.H., Shin J.-W., Kim N.-J. Chem. Asian J. 2021, 16, 3469–3475. https://doi.org/10.1002/asia.202100861
- Cao Y., Wu Y., Zhang Y., Zhou J., Xiao W., Gu D. ChemCatChem. 2021, 13, 3679–3686. https://doi.org/10.1002/cctc.202100644
- Thorat S.A., Lee Y., Jung A., Ann J., Ahn S., Baek J., Zuo D., Do N., Jeong J.J., Blumberg P.M., Esch T.E., Turcios N.A., Pearce L.V., Ha H.-J., Yoo Y.D., Hong S., Choi S., Lee J. J. Med. Chem. 2021, 64, 370–384. https://doi.org/10.1021/acs.jmedchem.0c00982
- Wei L., Wei Y., Zhang J., Xu L. Green Chem. 2021, 23, 4446–4450. https://doi.org/10.1039/D1GC01063H
- Du L., Shi L., Liu Y., Ling Y., Zhang Y., Zhou C., Xiong B. ChemistrySelect. 2020, 5, 11811–11816. https://doi.org/10.1002/slct.202003410
- Jaiswal G., Subaramanian M., Sahoo M.K., Balaraman E. ChemCatChem. 2019, 11, 2449–2457. https://doi.org/10.1002/cctc.201900367
- Chang K.-H., Liu Y.-H., Liu J.-C., Peng Y.-C., Yang Y.-H., Li Z.-B., Jheng R.-H., Chao C.-M., Liu K.-M., Chou P.-T. Chem. Eur. J. 2019, 25, 14972–14982. https://doi.org/10.1002/chem.201904027
- Bang S.B, Kim J. Synt. Commun. 2018, 48, 1291–1298. https://doi.org/10.1080/00397911.2018.1445866
- Zhang Z., Gu J., Ji L., Liu X., Zhang T., Lv Y., Liu F., Jia Z., Loh T.-P. ACS Catal. 2022, 12, 14123–14129. https://doi.org/10.1021/acscatal.2c04010
- Shang S., Li Y., Lv Y., Dai W., Asian J. Org. Chem. 2022, 11, e202200126. https://doi.org/10.1002/ajoc.202200126
- Pang S., Liu F., Zhang Y., Dong Z., Su Q., Wang W., Li Z., Zhou F., Wang Y. ACS Sustainable Chem. Eng. 2021, 9, 9062–9077. https://doi.org/10.1021/acssuschemeng.1c02322
- Yu K., Zhang H., Su C., Zhu Y. Eur. J. Org. Chem. 2020, 13, 1956–1960. https://doi.org/10.1002/ejoc.202000170
- Zheng M., Shi J., Yuan T., Wang X. Angew. Chem. Int. Ed. 2018, 57, 5487–5491. https://doi.org/10.1002/anie.201800319
- Cui X., Li Y., Bachmann S., Scalone M., Surkus A.-E., Junge K., Topf C., Beller M. J. Am. Chem. Soc. 2015, 137, 10652–10658. https://doi.org/10.1021/jacs.5b05674
Supplementary files


