Methods for the Synthesis of Nitroquinolines

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The review systematizes literature data on methods for obtaining quinoline nitro derivatives over the past 10–15 years. The material is classified by types of chemical reactions.

About the authors

I. I. Ustinov

Tula State Lev Tolstoy Pedagogical University

Email: bai2688@yandex.ru
ORCID iD: 0000-0002-6334-3866
Russia, 300026 Tula

References

  1. Мамедова В.Л., Мамедова С.В., Коршин Д.Э., Гаврилова Е.Л., Мамедов В.А. Успехи хим. 2025, 94, RCR5167. https://doi.org/10.59761/RCR5167
  2. Starosotnikov A., Bastrakov M. Pharmaceuticals. 2025, 18, 692. https://doi.org/10.3390/ph18050692
  3. Huang J., Ding F., Rojsitthisak P., He F.-S., Wu J. Org. Chem. Front. 2020, 7, 2873–2898. https://doi.org/10.1039/d0qo00563k
  4. Patel S.S., Patel D.B., Patel H.D. ChemistrySelect. 2021, 6, 1–21. https://doi.org/10.1002/slct.2020046
  5. Bastrakov M.A., Starosotnikov A.M. Pharmaceuticals. 2022, 15, 705. https://doi.org/10.3390/ph15060705
  6. Злотин С.Г., Далингер И.Л., Махова Н.Н., Тартаковский В.А. Успехи хим. 2020, 89, 1–45. https://doi.org/10.1070/RCR4908
  7. Коротаев В.Ю., Кутяшев И.Б., Барков А.Ю., Сосновских В.Я. Успехи хим. 2019, 88, 27–58. https://doi.org/10.1070/RCR4840
  8. Пелипко В.В., Байчурин Р.И., Макаренко С.В. Изв. АН. Сер. хим. 2019, 10, 1821–1837. https://doi.org/10.1007/s11172-019-2631-z
  9. Olender D., Żwawiak J., Zaprutko L. Pharmaceuticals. 2018, 11, 54. https://doi.org/10.3390/ph11020054
  10. Patterson S., Wyllie S. Trends in Parasitol. 2014, 30, 289–298. https://doi.org/10.1016/j.pt.2014.04.003
  11. Yan G., Yang M. Org. Biomol. Chem. 2013, 11, 2554–2566. https://doi.org/10.1039/C3OB27354G
  12. Sydnes M.O. Studies in Nat. Prod. Chem. 2020, 64, 59–84. https://doi.org/10.1016/B978-0-12-817903-1.00002-4
  13. Zigmundo G.C. de O., Schuch L.F., Schmidt T.R., Silveira F.M., Martins M.A.T., Carrard V.C., Martins M.D., Wagner V.P. Pathology – Research and Practice. 2022, 236, 153970. https://doi.org/10.1016/j.prp.2022.153970
  14. Paloque L., Verhaeghe P., Casanova M., Castera-Ducros C., Dumètre A., Mbatchi L., Hutter S., Kraiem-M’Rabet M., Laget M., Remusat V., Rault S., Rathelot P., Azas N., Vanelle P. Eur. J. Med. Chem. 2012, 54, 75–86. https://doi.org/10.1016/j.ejmech.2012.04.029
  15. Arasakumar T., Mathusalini S., Gopalan S., Shyamsivappan S., Ata A., Mohan P.S. Bioorg. Med. Chem. Lett. 2017, 27, 1538–1546. https://doi.org/10.1016/j.bmcl.2017.02.042
  16. Saral A., Sudha P., Muthu S., Irfan A. J. Mol. Struct. 2022, 1247, 131414. https://doi.org/10.1016/j.molstruc.2021.131414
  17. Santos G.C., Rodrigues J.L., Moreno V.F., Silva-Filho L.C. J. Mol. Struct. 2021, 1235, 130260. https://doi.org/10.1016/j.molstruc.2021.130260
  18. Pedron J., Boudot C., Hutter Sé., Bourgeade-Delmas S., Stigliani J.-L., Sournia-Saquet A., Moreau A., Boutet-Robinet E., Paloque L., Mothes E., Laget Michè., Vendier L., Pratviel Geneviè., Wyllie S., Fairlamb A., Azas N., Courtioux B., Valentin A., Verhaeghe P. Eur. J. Med. Chem. 2018, 155, 135–152. https://doi.org/10.1016/j.ejmech.2018.06.001
  19. Karakaya İ. J. Turk. Chem. Soc., Sect. A: Chem. 2022, 9, 85–114. https://doi.org/10.18596/jotcsa.1012453
  20. Petit M., Tran C., Roger T., Gallavardin T., Dhimane H., Palma-Cerda F., Blanchard-Desce M., Acher F.C., Ogden D., Dalko P.I. Org. Lett. 2012, 14, 6366–6369. https://doi.org/10.1021/ol3031704
  21. Chen H., Li P., Wang M., Wang L. Eur. J. Org. Chem. 2018, 2018, 2091–2097. https://doi.org/10.1002/ejoc.201800389
  22. Tamura M., Ogata H., Ishida Y., Takahashi Y. Tetrahedron Lett. 2017, 58, 3808–3813. https://doi.org/10.1016/j.tetlet.2017.08.041
  23. Zibaseresht R., Karimi P., Mohit-Azar S., Amirloo M.R., Azimi M. Int. J. Chem. Res. 2013, 5, 153–158. https://doi.org/10.9735/0975-3699.5.1.153-158
  24. Sosič I., Mitrović A., Ćurić H., Knez D., Brodnik Žugelj H., Štefane B., Kos J., Gobec S. Bioorg. Med. Chem. Lett. 2018, 28, 1239–1247. https://doi.org/10.1016/j.bmcl.2018.02.042
  25. Chen X., Kobiro K., Asahara H., Kakiuchi K., Sugimoto R., Saigo K., Nishiwaki N. Tetrahedron. 2013, 69, 4624–4630. https://doi.org/10.1016/j.tet.2013.04.008
  26. O'Brien N.J., Brzozowski M., Wilson D.J.D., Deady L.W., Abbott B.M. Bioorg. Med. Chem. 2014, 22, 3781–3790. https://doi.org/10.1016/j.bmc.2014.04.037
  27. Todorov A.R., Aikonen S., Muuronen M., Helaja J. Org. Lett. 2019, 21, 3764–3768. https://doi.org/10.1021/acs.orglett.9b01205
  28. Thorat S.A., Lee Y., Jung A., Ann J., Ahn S., Baek J., Zuo D., Do N., Jeong J.J., Blumberg P.M., Esch T.E., Turcios N.A., Pearce L.V., Ha H.-J., Yoo Y.D., Hong S., Choi S., Lee J. J. Med. Chem. 2021, 64, 370–384. https://doi.org/10.1021/acs.jmedchem.0c00982
  29. Zhang L., Cheng C., Li J., Wang L., Chumanevich A.A., Porter D.C., Mindich A., Gorbunova S., Roninson I.B., Chen M., McInnes C.J.Med.Chem.2022,65, 3420–3433. https://doi.org/10.1021/acs.jmedchem.1c01951
  30. Hudson S.A., McLean K.J., Surade S., Yang Y.-Q., Leys D., Ciulli A., Munro A.W., Abell C. Angew. Chem. Int. Ed. 2012, 51, 1–7. https://doi.org/10.1002/anie.201202544
  31. Song J., Zhu Y., Zu W., Duan C., Xu J., Jiang F., Wang X., Li, S., Liu C., Gao Q., Li H., Zhang Y., Tang W., Lu T., Chen Y. Bioorg. Med. Chem. 2021, 29, 115856. https://doi.org/10.1016/j.bmc.2020.115856
  32. Scott D.A., Hatcher J.M., Liu H., Fu M., Du G., Fontan L., Us I., Casalena G., Qiao Q., Wu H., Melnick A., Gray N.S. Bioorg. Med. Chem. Lett. 2019, 29, 1694–1698. https://doi.org/10.1016/j.bmcl.2019.05.040
  33. Wilson D.S., Hirosue S., Raczy M.M., BonillaRamirez L., Jeanbart L., Wang R., Kwissa M., Franetich J.-F., Broggi M.A.S., Diaceri G., Quaglia-Thermes X., Mazier D., Swartz M.A., Hubbell J.A. Nat. Mater. 2019, 18, 175–185. https://doi.org/10.1038/s41563-018-0256-5
  34. Sosic I., Mirkovic B., Arenz K., Stefane B., Kos J., Gobec S. J. Med. Chem. 2013, 56, 521–533. https://doi.org/10.1021/jm301544x
  35. Starosotnikov A.M., Nikol'skiy V.V., Borodulya A.N., Kachala V.V., Bastrakov M.A., Solkan V.N., Shevelev S.A. Asian J. Org. Chem. 2016, 5, 685–690. https://doi.org/10.1002/ajoc.201600065
  36. Haggag S.M.S., Farag A.A.M., Abdel Refea M. Thin Solid Films. 2014, 566, 38–44. https://doi.org/10.1016/j.tsf.2014.07.008
  37. Устинов И.И., Хлытин Н.В., Атрощенко Ю.М., Шахкельдян И.В. ЖОрХ. 2020, 56, 649–652. https://doi.org/10.1134/S1070428020040259
  38. Saroa R., Kaushik D., Bagai U., Kaur S., Salunke D.B. Bioorg. Med. Chem. Lett. 2019, 29, 1099–1105. https://doi.org/10.1016/j.bmcl.2019.02.029
  39. Kayarmar R., Nagaraja G.K., Bhat M., Naik P., Rajesh K.P., Shetty S., Arulmoli T. Med. Chem. Res. 2014, 23, 2964–2975. https://doi.org/10.1007/s00044-013-0885-9
  40. Мокров Г.В., Воронина Т.А., Литвинова С.А., Ковалев И.Г., Неробкова Л.Н., Дурнев А.Д., Гудашева Д.А., Середенин С.Б. Хим.-фарм. ж. 2019, 53, 3–9. https://doi.org/10.1007/s11094-019-01978-1
  41. Mokrov G.V., Litvinova S.A., Voronina T.A., Nerobkova L.N., Kutepova I.S., Kovalev I.G., Gudasheva T.A., Durnev A.D. Med. Chem. Res. 2019, 28, 1901–1911. https://doi.org/10.1007/s00044-019-02422-5
  42. Kaneko D., Ninomiya M., Yoshikawa R., Ono Y., Sonawane A.D., Tanaka K., Nishina A., Koketsu M. Bioorg. Chem. 2020, 104, 104293. https://doi.org/10.1016/j.bioorg.2020.104293
  43. Audisio D., Messaoudi S., Cojean S., Peyrat J.-F., Brion J.-D., Bories C., Huteau F., Loiseau P.M., Alami M. Eur. J. Med. Chem. 2012, 52, 44–50. https://doi.org/10.1016/j.ejmech.2012.03.003
  44. Albin T.J., Tom J.K., Manna S., Gilkes A.P., Stetkevich S.A., Katz B.B., Supnet M., Felgner J., Jain A., Nakajima R., Jasinskas A., Zlotnik A., Pearlman E., Davies D.H., Felgner P.L., Burkhardt A.M., Esser-Kahn A.P. ACS Cent. Sci. 2019, 5, 1137–1145. https://doi.org/10.1021/acscentsci.8b00823
  45. Gao D., Xiao Q., Zhang M., Li Y. Bioorg. Med. Chem. 2016, 24, 2549–2558. https://doi.org/10.1016/j.bmc.2016.04.022
  46. He Y., Zhao N., Qiu L., Zhang X., Fan X. Org. Lett. 2016, 18, 6054–6057. https://doi.org/10.1021/acs.orglett.6b02998
  47. Wang Y., Yu F., Han X., Li M., Tong Y., Ding J., Hou H. Inorg. Chem. 2017, 56, 5953–5958. https://doi.org/10.1021/acs.inorgchem.7b00653
  48. Whiteoak C.J., Planas O., Company A., Ribas X. Adv. Synth. Catal. 2016, 358, 1679–1688. https://doi.org/10.1002/adsc.201600161
  49. Khan B., Khan A.A., Bora D., Verma D., Koley D. ChemistrySelect. 2017, 2, 260–264. 10.1002/slct.201601917
  50. Zhu X., Qiao L., Ye P., Ying B., Xu J., Shen C., Zhang P. RSC Adv. 2016, 6, 89979–89983 https://doi.org/10.1039/C6RA19583K
  51. Hernando E., Castillo R.R., Rodríguez N., Gómez A.R., Carretero, J.C. Chem. Eur. J. 2014, 20, 1–7. https://doi.org/10.1002/chem.201404000
  52. Mondal S., Samanta S., Hajra A. Adv. Synth. Catal. 2018, 360, 1026–1031. https://doi.org/10.1002/adsc.201701555
  53. Zhao J., Li P., Xia C., Li F. RSC Adv. 2015, 5, 32835–32838. https://doi.org/10.1039/C5RA04632G
  54. Боровлева А.А., Авакян Е.К., Амангазиева Г.А., Демидов О.П., Побединская Д.Ю., Ермоленко А.П., Ларин А.Н., Боровлев И.В. ХГС. 2022, 4/5 235–242. https://doi.org/10.1007/s10593-022-03077-8
  55. Романов В.В., Нижник Я.П., Фофанов А.Д. ЖСХ. 2015, 56, 381–386. https://doi.org/10.1134/s0022476615020237
  56. Sarmah B.K., Konwar M., Bhattacharyya D., Adhikari P., Das A. Adv. Synth. Catal. 2019, 361, 5616–5625. https://doi.org/10.1002/adsc.201901103
  57. Kokatla H.P., Yoo E., Salunke D.B., Sil D., Ng C.F., Balakrishna R., Malladi S.S., Fox L.M., David S.A. Org. Biomol. Chem. 2013, 11, 1179–1198. https://doi.org/10.1039/C2OB26705E
  58. Cai R., Wang L.-N., Fan J.-J., Geng S.-Q., Liu Y.-M. Bioorg. Chem. 2019, 93, 103328. https://doi.org/10.1016/j.bioorg.2019.103328
  59. Zhu J., Wang L.-N., Cai R., Geng S.-Q., Dong Y.-F., Liu Y.-M. Bioorg. Med. Chem. Lett. 2019, 29, 1325–1329. https://doi.org/10.1016/j.bmcl.2019.03.050
  60. Liu C., Wang L.-N., Liu Y.-M. Int. J. Mol. Sci. 2022, 23, 11231. https://doi.org/10.3390/ijms231911231
  61. Sun Q.-Z., Lin G.-F., Li L.-L., Jin X.-T., Huang L.-Y., Zhang G., Yang W., Chen K., Xiang R., Chen C., Wei Y.-Q., Lu G.-W., Yang S.-Y. J. Med. Chem. 2017, 60, 6337–6352. https://doi.org/10.1021/acs.jmedchem.7b00665
  62. Ma X.-D., Qiu N. Yang B., He Q.-J., Hu Y.-Z. Med. Chem. Commun. 2016, 7, 297–310. https://doi.org/10.1039/C5MD00401B
  63. Zheng L., Zeng Z., Yan Q., Jia F.-C., Jia L., Chen Y. Adv. Synth. Catal. 2018, 360, 4037–4042. https://doi.org/10.1002/adsc.201800773
  64. Awasthi A., Yadav P., Yadav S., Tiwari D.K. Adv. Synth. Catal. 2022, 364, 41–46. https://doi.org/10.1002/adsc.202100861
  65. Luo H., Yan X., Chen L., Li Y., Liu N., Yin G. Eur. J. Org. Chem. 2016, 2016, 1702–1707. https://doi.org/10.1002/ejoc.201501618
  66. Kim H., Kim S.-G. Tetrahedron Lett. 2015, 56, 4819–4823. https://doi.org/10.1016/j.tetlet.2015.06.071
  67. Suresh K.A., Prabhakar R.T., Madhavachary R., Ramachary D.B. Org. Biomol. Chem. 2016, 14, 5494–5499. https://doi.org/10.1039/C5OB02178B
  68. Lee Y., Kim S.-G. J. Org. Chem. 2014, 79, 8234−8243. https://doi.org/10.1021/jo501406v
  69. Ramachary D.B., Shruthi K.S., Madhavachary R. Eur. J. Org. Chem. 2015, 2015, 6413–6418. https://doi.org/10.1002/ejoc.201500994
  70. Rode N., Arcadi A., Chiarini M., Marinelli F. Synthesis. 2017, 49, 2501–2512. https://doi.org/10.1055/s-0036-1588147
  71. Symeonidis T.S., Lykakis I.N., Litinas K.E. Tetrahedron. 2013, 69, 4612–4616. https://doi.org/10.1016/j.tet.2013.04.026
  72. Jiang Y.-B., Zhang W.-S., Cheng H.-L., Liu Y.-Q., Yang R. Chin. Chem. Lett. 2014, 25, 779–782. https://doi.org/10.1016/j.cclet.2014.03.011
  73. Santos G.C.d., Moreno V.F., Oshiro P.B., da SilvaFilho L.C. Tetrahedron. 2018, 74, 6144–6149. https://doi.org/10.1016/j.tet.2018.09.003
  74. Santos G.C.d., de Andrade Bartolomeu A., Ximenes V.F., Silva-Filho L.C.d. J Fluoresc. 2017, 27, 271–280. https://doi.org/10.1007/s10895-016-1954-5
  75. Andrade A.d., Santos G.C.d., Silva-Filho L.C.d. J. Heterocycl. Chem. 2015, 52, 273– 277. https://doi.org/10.1002/jhet.1980
  76. Zhang L., Wu B., Zhou Y., Xia J., Zhou S., Wang S. Chin. J. Chem. 2013, 31, 465–471. https://doi.org/10.1002/cjoc.201300047
  77. Вершинина И.А., Горнухина О.В., Любимова Т.В., Голубчиков О.А., Семейкин А.С. Росс. хим. ж. 2014, 58, 85–89. https://doi.org/10.1134/S1070363216090383
  78. Lüdtke C., Haupt A., Wozniak M., Kulak N. J. Fluor. Chem. 2017, 193, 98–105. https://doi.org/10.1016/j.jfluchem.2016.11.016
  79. Saggadi H., Luart D., Thiebault N., Polaert I., Estel L., Len C. RSC Adv. 2014, 4, 21456–21464. https://doi.org/10.1039/C4RA00758A
  80. Lamberth C., Kessabi F.M., Beaudegnies R., Quaranta L., Trah S., Berthon G., Cederbaum F., Vettiger T., Rasanna CS. Synlett. 2014, 25, 858–862. https://doi.org/10.1055/s-0033-1340670
  81. Laras Y., Hugues V., Chandrasekaran Y., Blanchard-Desce M., Acher F.C., Pietrancosta N. J. Org. Chem. 2012, 77, 8294−8302. https://doi.org/10.1021/jo301652j
  82. Денисов В.Я., Грищенкова Т.Н., Ткаченко Т.Б., Лузгарев С.В. ЖОрХ. 2016, 52, 1806–1812. https://doi.org/10.1134/S1070428016120150
  83. Mehedi Md S. Al, Tepe J.J. J. Org. Chem. 2020, 85, 6741–6746. https://doi.org/10.1021/acs.joc.0c00803
  84. Bao L., Liu J., Xu L., Hu Z., Xu X. Adv. Synth. Catal. 2018, 360, 1870–1875. https://doi.org/10.1002/adsc.201800152
  85. Wang L., Ferguson J., Zeng F. Org. Biomol. Chem. 2015, 13, 11486–11491. https://doi.org/10.1039/C5OB01659B
  86. Sakai N., Tamura K., Shimamura K., Ikeda R., Konakahara T. Org. Lett. 2012, 14, 836–839. https://doi.org/10.1021/ol203360g
  87. Tóth F., Cseh E.K., Vécsei L. Int. J. Mol. Sci. 2021, 22, 403. https://doi.org/10.3390/ijms22010403
  88. Li X., Deng X., Coyne A.G., Srinivasan R. Chem. Eur. J. 2019, 25, 8018–8023. https://doi.org/10.1002/chem.201901633
  89. Manna S., Maity S., Rana S., Agasti S., Maiti D. Org. Lett. 2012, 14, 1736–1739. https://doi.org/10.1021/ol300325t
  90. Chatterjee N., Bhatt D., Goswami A. Org. Biomol. Chem. 2015, 13, 4828–4832. https://doi.org/10.1039/C5OB00337G
  91. Amal Joseph P.J., Priyadarshini S., Lakshmi Kantam M., Maheswaran H. Tetrahedron Lett. 2012, 53, 1511–1513. https://doi.org/10.1016/j.tetlet.2012.01.056
  92. Priyadarshini S., Amal Joseph P.J., Kantam M.L., Sreedhar B. Tetrahedron. 2013, 69, 6409–6414. https://doi.org/10.1016/j.tet.2013.05.102
  93. Wu C., Bian Q., Ding T., Tang M., Zhang W., Xu Y., Liu B., Xu H., Li H.-B., Fu H. ACS Catal. 2021, 11, 9561–9568. https://doi.org/10.1021/acscatal.1c02272
  94. Azad C.S., Balaramnavar V.M., Khan I.A., Doharey P.K., Saxena J.K., Saxena A.K. RSC Adv. 2015, 5, 82208–82214. https://doi.org/10.1039/C5RA18036H
  95. Azad C.S., Narula A.K.RSCAdv.2016,6, 19052–19059. https://doi.org/10.1039/C5RA26909A
  96. Agasti S., Maiti S., Maity S., Anniyappan M., Talawar M.B., Maiti D. Polyhedron. 2019, 172, 120–124. https://doi.org/10.1016/j.poly.2019.04.005
  97. Reddy K.R., Maheswari C.U., Venkateshwar M., Kantam M.L. Adv. Synth. Catal. 2009, 351, 93–96. https://doi.org/10.1002/adsc.200800641
  98. Antoniak D., Michał Barbasiewicz M. Org. Lett. 2022, 24, 516–519. https://doi.org/10.1021/acs.orglett.1c03920
  99. Devkar R.U., Rao D.P., Gokavarapu K., Samala S.R.K. Asian J. Res. Chem. 2019, 12, 69–70. https://doi.org/10.5958/0974-4150.2019.00015.4
  100. Toba O.T., Chris O.U., Izuchukwu U.D. Orient. J. Chem. 2015, 31, 371–378. https://doi.org/10.13005/ojc/310144
  101. Godwin-Nwakwasi E.U., Okoro U.C., Ijeomah A.O., Agbo I., Ezeokonkwo M.A. Asian J. Chem. 2017, 29, 742–748. https://doi.org/10.14233/ajchem.2017.20220
  102. Egu S.A., Okoro U.S., Onoabedje E.A. J. Heterocycl. Chem. 2017, 54, 1572–1577. https://doi.org/10.1002/jhet.2745
  103. Wei Z., Shao F., Wang J. Chin. J. Catal. 2019, 40, 980–1002. https://doi.org/10.1016/S1872-2067(19)63336-X
  104. Bera A., Bera S., Banerjee D. Chem. Commun. 2021, 57, 13042–13058. https://doi.org/10.1039/D1CC04919D
  105. Tan K.C., He T., Chua Y.S., Chen P. J. Phys. Chem. C. 2021, 125, 18553–18566. https://doi.org/10.1021/acs.jpcc.1c04783
  106. Tuo X., Chen S., Jiang P., Ni P., Wang X., Deng G.-J. RSC Adv. 2020, 10, 8348–8351. https://doi.org/10.1039/C9RA10964A
  107. Damodara D., Arundhathi R., Likhar P.R. Adv. Synth. Catal. 2014, 356, 189–198. https://doi.org/10.1002/adsc.201300453
  108. Cui X., Li Y., Bachmann S., Scalone M., Surkus A.-E., Junge K., Topf C., Beller M. J. Am. Chem. Soc. 2015, 137, 10652–10658. https://doi.org/10.1021/jacs.5b10746
  109. Zheng M., Shi J., Yuan T., Wang X. Angew. Chem. Int. Ed. 2018, 57, 5487–5491. https://doi.org/10.1002/anie.201800319
  110. Sahoo M.K., Jaiswal G., Rana J., Balaraman E. Chem. Eur. J. 2017, 23, 14167–14172. https://doi.org/10.1002/chem.201703642
  111. Wu T., Li S., Liu S., Cheong W.-C., Peng C., Yao K., Li Y., Wang J., Jiang B., Chen Z., Chen Zh., Wei X., Wu K. Nano Res. 2022, 15, 3980–3990. https://doi.org/10.1007/s12274-022-4091-2
  112. Echevarría I., Vaquero M., Manzano B.R., Jalón F.A., Quesada R., Espino G. Inorg. Chem. 2022, 61, 6193–6208. https://doi.org/10.1021/acs.inorgchem.2c00358
  113. Sun K., Shan H., Ma R., Wang P., Neumann H., Lu G.-P., Beller M. Chem. Sci. 2022, 13, 6865–6872. https://doi.org/10.1039/D2SC01838A
  114. Liu J.-J., Guo F.-H., Cui F.-J., Zhu J.-H., Liu X.-Y., Ullah A., Wang X.-C., Quan Z.-J. New J. Chem. 2022, 46, 1791–1799. https://doi.org/10.1039/D1NJ05411B
  115. Yoo H.-S., Yang Y.-S., Kim S.L., Son S.H., Jang Y.H., Shin J.-W., Kim N.-J. Chem. Asian J. 2021, 16, 3469–3475. https://doi.org/10.1002/asia.202100861
  116. Cao Y., Wu Y., Zhang Y., Zhou J., Xiao W., Gu D. ChemCatChem. 2021, 13, 3679–3686. https://doi.org/10.1002/cctc.202100644
  117. Thorat S.A., Lee Y., Jung A., Ann J., Ahn S., Baek J., Zuo D., Do N., Jeong J.J., Blumberg P.M., Esch T.E., Turcios N.A., Pearce L.V., Ha H.-J., Yoo Y.D., Hong S., Choi S., Lee J. J. Med. Chem. 2021, 64, 370–384. https://doi.org/10.1021/acs.jmedchem.0c00982
  118. Wei L., Wei Y., Zhang J., Xu L. Green Chem. 2021, 23, 4446–4450. https://doi.org/10.1039/D1GC01063H
  119. Du L., Shi L., Liu Y., Ling Y., Zhang Y., Zhou C., Xiong B. ChemistrySelect. 2020, 5, 11811–11816. https://doi.org/10.1002/slct.202003410
  120. Jaiswal G., Subaramanian M., Sahoo M.K., Balaraman E. ChemCatChem. 2019, 11, 2449–2457. https://doi.org/10.1002/cctc.201900367
  121. Chang K.-H., Liu Y.-H., Liu J.-C., Peng Y.-C., Yang Y.-H., Li Z.-B., Jheng R.-H., Chao C.-M., Liu K.-M., Chou P.-T. Chem. Eur. J. 2019, 25, 14972–14982. https://doi.org/10.1002/chem.201904027
  122. Bang S.B, Kim J. Synt. Commun. 2018, 48, 1291–1298. https://doi.org/10.1080/00397911.2018.1445866
  123. Zhang Z., Gu J., Ji L., Liu X., Zhang T., Lv Y., Liu F., Jia Z., Loh T.-P. ACS Catal. 2022, 12, 14123–14129. https://doi.org/10.1021/acscatal.2c04010
  124. Shang S., Li Y., Lv Y., Dai W., Asian J. Org. Chem. 2022, 11, e202200126. https://doi.org/10.1002/ajoc.202200126
  125. Pang S., Liu F., Zhang Y., Dong Z., Su Q., Wang W., Li Z., Zhou F., Wang Y. ACS Sustainable Chem. Eng. 2021, 9, 9062–9077. https://doi.org/10.1021/acssuschemeng.1c02322
  126. Yu K., Zhang H., Su C., Zhu Y. Eur. J. Org. Chem. 2020, 13, 1956–1960. https://doi.org/10.1002/ejoc.202000170
  127. Zheng M., Shi J., Yuan T., Wang X. Angew. Chem. Int. Ed. 2018, 57, 5487–5491. https://doi.org/10.1002/anie.201800319
  128. Cui X., Li Y., Bachmann S., Scalone M., Surkus A.-E., Junge K., Topf C., Beller M. J. Am. Chem. Soc. 2015, 137, 10652–10658. https://doi.org/10.1021/jacs.5b05674

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).