Terminal Epoxides Functionalization. Tetraethylammonium Iodide-Catalyzed Meinwald Rearrangement and Synthesis of 1,3-Dioxolan
- Authors: Kharaneko A.O1, Kharaneko O.I2
-
Affiliations:
- Research Institute of Physical and Organic Chemistry, Southern Federal University
- Litvinenko Institute of Physical Organic and Coal Chemistry
- Issue: Vol 61, No 11 (2025)
- Pages: 1585–1592
- Section: ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ
- URL: https://bakhtiniada.ru/0514-7492/article/view/381755
- DOI: https://doi.org/10.7868/S3034630425110078
- ID: 381755
Cite item
Abstract
A new catalyst for Meinwald rearrangement and synthesis of 1,3-dioxolan is proposed for reactions of terminal epoxides as an example. A highly efficient and selective rearrangement in the presence of catalytic quantities of tetraethylammonium iodide was shown. Excellent yields of acetyl derivatives were obtained at this rearrangement. An anomalous condensation of 4-(3,6-dichloro-9H-carbazol-9-yl)-3-hydroxybutanenitrile with aldehydes and ketones was discovered. This condensation is accompanied by the elimination of water in an alkaline solution and only derivatives of Z-butadienes are formed.
About the authors
A. O Kharaneko
Research Institute of Physical and Organic Chemistry, Southern Federal University
Email: antonhar08@rambler.ru
ORCID iD: 0000-0002-8677-2647
Rostov-on-Don, Russia
O. I Kharaneko
Litvinenko Institute of Physical Organic and Coal Chemistry
ORCID iD: 0000-0003-1105-8227
Donetsk, Russia
References
- Mamedova V.L., Khikmatova G.Z., Korshin D.E., Mamedova S.V., Gavrilova E.L., Mamedov V.A. Russ. Chem. Rev. 2022, 91 (11), RCR5049. https://doi.org/10.57634/RCR5049
- Lamb J.R., Jung Y., Coates G.W. Org. Chem. Front. 2015, 346–349. https://doi.org/10.1039/c4qo00324a
- Jurgens E., Wucher B., Rominger F., Tornroos K.W., Kunz D. Chem. Commun. 2015, 51, 1897–1900. https://doi.org/10.1039/c4cc07154a
- Singh G.S., Mollet K., D’Hooghe M., Kimpe N. Chem. Rev. 2012, 113, 1441–1498. https://doi.org/10.1021/cr3003455
- Fallah-Mehrjardi M., Kiasat A.R., Niknam Kh. J. Iranian Chem. Soc. https://doi.org/10.1007/s13738-018-1400-5
- Bakhtin S.G., Shved E.N., Sinelnikova M.A., Bespalko Yu. N. Russ. J. Org. Chem. 2021, 57, 524–531. https://doi.org/10.31857/S0514749221040042
- Xu Ch., Xu J. Org. Biomol. Chem. 2020, 18, 127–134. https://doi.org/10.1039/c9ob02428j
- Zhang Yu., Hu B., Chen Yu., Wang Zh. A Europ. J. Chem. 2024, 30 (59), e202402469. https://doi.org/10.1002/chem.202402469
- Kharaneko A.O., Pekhtereva T.M., Kharaneko O.I. Russ. J. Org. Chem. 2020, 56 (10), 1677–1684. https://doi.org/10.1134/S1070428020100012
- Сiaccio J.A., Stanescu C., Bontemps J. Tetrahedron Lett. 1992, 33, 1431–1434.
- Iranpoor N., Shekarriz M. Synth. Commun. 1999, 29, 2249–2254.
- Elenkov M.M., Hauer B., Janssen D.B. Adv. Synth. Catal. 2006, 348, 579–585. https://doi.org/10.1002/adsc.200505333
- Shaikh Abbas-Alli G., Sivaram S. Chem. Rev. 1996, 96, 951−976.
- Paquin А.М., Epoxydverbindungen und Epoxydharze, Springer-Verlag, Bеrlin-Gottingen-Heidelberg, 1958. 963 p.
- Vyvyan J.R., Meyer J.A., Meyer K.D. J. Org. Chem. 2003, 68, 9144–9147. https://doi.org/10.1021/jo035112y
- Mirkhani V., Tangestaninejad S., Yadollahi B., Alipanah L. Catal. Lett. 2003, 91 (1–2), 129–132. https://doi.org/10.1023/B:CATL.0000006328.46032.a1
- Luthra P.M., Kumar N. Mini Rev. Med. Chem. 2021, 21(19), 2929–2956. https://doi.org/10.2174/1389557521666210521221808
- Oner S., Bryce M.R. Mater. Chem. Front. 2023, 7, 4304–4338. https://doi.org/10.1039/D3QM00399J
- Luthra P.M., Kumar N. Mini Rev. Med. Chem. 2021, 21(19), 2929–2956. https://doi.org/10.2174/1389557521666210521221808
- Oner S., Bryce M.R. Mater. Chem. Front. 2023, 7, 4304–4338. https://doi.org/10.1039/D3QM00399J
Supplementary files


