Determination of kinetic parameters of the methane pyrolysis process on a NiO-CuO-Al2O3 catalyst using mathematical modeling methods

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Kinetic parameters for methane pyrolysis on a NiO-CuO-Al2O3 catalyst were obtained using mathematical modeling methods. The pre-exponential factor and activation energy were determined for two kinetic models, with the calculated values adequately describing the experimental points. The mathematical model was verified. Using a system of equations that takes into account catalyst deactivation over time and numerical calculations, the kinetic parameters of the deactivation process were determined: activation energy Ed = 95 kJ/mol and k0d values for different deactivation order d. It was shown that in mathematical modeling of the catalytic pyrolysis of methane on a NiO-CuO-Al2O3 catalyst, the root-mean-square relative error values do not exceed 2.5–7.9% in the high-temperature range of 625–650°C, which makes it possible to use both kinetic models for numerical calculations.

About the authors

E. V Shelepova

Boreskov Institute of Catalysis SB RAS

Email: shev@catalysis.ru
Novosibirsk, Russia

D. M Shivtsov

Boreskov Institute of Catalysis SB RAS

Novosibirsk, Russia

S. D Afonnikova

Boreskov Institute of Catalysis SB RAS

Novosibirsk, Russia

G. B Veselov

Boreskov Institute of Catalysis SB RAS

Novosibirsk, Russia

Yu. I Bauman

Boreskov Institute of Catalysis SB RAS

Novosibirsk, Russia

I. V Mishakov

Boreskov Institute of Catalysis SB RAS

Novosibirsk, Russia

A. A Vedyagin

Boreskov Institute of Catalysis SB RAS

Novosibirsk, Russia

References

  1. Amin A.M., Croiset E., Epling W. // Int. J. Hydrogen Energy. 2011. V. 36. № 4. P. 2904. https://doi.org/10.1016/j.ijhydene.2010.11.035
  2. Abbas H.F., Wan Daud W.M.A. // Int. J. Hydrogen Energy. 2010. V. 35. № 3. P. 1160. https://doi.org/10.1016/j.ijhydene.2009.11.036
  3. Villacampa J.I., Royo C., Romeo E., Montoya J. A., Del Angel P., Monzón A. // Appl. Catal. A: Gen. 2003. V. 252. № 2. P. 363. https://doi.org/10.1016/S0926-860X(03)00492-7
  4. Dussault L., Dupin J. C., Guimon C., Monthioux M., Latorre N., Ubieto T., Romeo E., Royo C., Monzón A. // J. Catal. 2007. V. 251. P. 223. https://doi.org/10.1016/j.jcat.2007.06.022
  5. Cazaña F., Latorre N., Tarifa P., Labarta J., Romeo E., Monzón A. // Catal. Today. 2018. V. 299. P. 67. https://doi.org/10.1016/j.cattod.2017.03.056
  6. Chesnokov V.V., Chichkan A.S. // Int. J. Hydrogen Energy. 2009. V. 34. P. 2979. https://doi.org/10.1016/j.ijhydene.2009.01.074
  7. Чесноков В.В. // Кинетика и катализ. 2022. T. 63. № 1. C. 77. https://doi.org/10.31857/S0453881122010014
  8. Vedyagin A.A., Mishakov I.V., Korneev D.V., Bauman Yu.I., Nalivaiko A.Y., Gromov A.A. // Hydrogen. 2021. V. 2. P. 122. https://doi.org/10.3390/hydrogen2010007
  9. Mishakov I.V., Bauman Yu.I., Streltsov I. A., Korneev D.V., Vinokurova O.B., Vedyagin A.A. // Resource-Efficient Technologies. 2016. V. 2. P. 61. https://doi.org/10.1016/j.reffit.2016.06.004
  10. Wang S., Tan K.H. // Eng. Struct. 2021. V. 238. Art. 112221. https://doi.org/10.1016/j.engstruct.2021.112221
  11. Wang L., Aslani F. // Constr. Build. Mater. 2021. V. 273. Art. 121659. https://doi.org/10.1016/j.conbuildmat.2020.121659
  12. Petukhova E.S., Fedorov A.L., Bauman Yu.I., Zdanovvich A.A., Mishakov I.V., Matsko M.A. // J. Phys: Conf. Ser. 2021. V. 1889. Art. 022089. https://doi.org/10.1088/1742-6596/1889/2/022089
  13. Nanni F., Travaglia P., Valentini M. // Compos. Sci. Technology. 2009. V. 69. P. 485. https://doi.org/10.1016/j.compscitech.2008.11.026
  14. He S., Yang E.-H. // Cem. Concr. Compos. 2021. V. 119. P. 104019. https://doi.org/10.1016/j.cemconcomp.2021.104019
  15. Веселов Г.Б., Шивцов Д.М., Афонникова С.Д., Мишаков И.В., Ведягин А.А. // Кинетика и катализ. 2023. Т. 64. № 6. С. 857. https://doi.org/10.31857/S0453881123060199
  16. Ruiz-Cornejo J.C., Sebastián D., Lázaro M.J. // Rev. Chem. Eng. 2020. V. 36. P. 493. https://doi.org/10.1515/revce-2018-0021
  17. Zavarukhin S.G., Kuvshinov G.G. // Chem. Eng. J. 2006. V. 120. P. 139. https://doi.org/10.1016/j.cej.2006.03.004
  18. Abbas H.F., Daud W.M.A.W. // Int. J. Hydrogen Energy. 2010. V. 35. P. 12268. https://doi.org/10.1016/j.ijhydene.2010.08.036
  19. Zavarukhin S.G., Kuvshinov G.G. // Chem. Eng. J. 2008. V. 137. P. 681. https://doi.org/10.1016/j.cej.2007.06.036
  20. Ammendola P., Chirone R., Ruoppolo G., Russo G., Solimene R. // Int. J. Hydrogen Energy. 2008. V. 33. P. 2679. https://doi.org/10.1016/j.ijhydene.2008.03.033
  21. Borghei M., Karimzadeh R., Rashidi A., Izadi N. // Int. J. Hydrogen Energy. 2010. V. 35. P. 9479. https://doi.org/10.1016/j.ijhydene.2010.05.072
  22. Zavarukhin S.G., Kuvshinov G.G. // Appl. Catal. A: Gen. 2004. V. 272. P. 219. https://doi.org/10.1016/j.apcata.2004.05.044
  23. Wang H.Y., Lua A.C. // Chem. Eng. J. 2014. V. 243. P. 79. https://doi.org/10.1016/j.cej.2013.12.100
  24. Demicheli M.C., Ponzi E.N., Ferretti O.A., Yeramian A.A. // Chem. Eng. J. 1991. V. 46. P. 129. https://doi.org/10.1016/0300-9467(91)87004-T
  25. Alstrup I., Tavares M.T. // J. Catal. 1993. V. 139. P. 513. https://doi.org/10.1006/jcat.1993.1045
  26. Nasir Uddin M., Wan Daud W.M.A., Abbas H.F. // Energy Convers. Manag. 2014. V. 87. P. 796. https://doi.org/10.1016/j.enconman.2014.07.072
  27. Chen Q., Lua A.C. // Chem. Eng. J. 2020. V. 389. Art. 124366. https://doi.org/10.1016/j.cej.2020.124366
  28. Мишаков И.В., Афонникова С.Д., Бауман Ю.И., Шубин Ю.В., Тренихин М.В., Серкова А.Н., Ведягин А.А. // Кинетика и катализ. 2022. Т. 63. № 1. С. 110. https://doi.org/10.31857/S045388112201004X
  29. Shvitsov D.M., Veselov G.B., Afonnikova S.D., Ayupov A.B., Shubin Y.V., Bauman Y.I., Mishakov I.V., Shelepova E.V., Vedyagin A.A. // Int. J. Hydrogen Energy. 2025. V. 149. Art. 150082. https://doi.org/10.1016/j.ijhydene.2025.150082
  30. Shelepova E.V., Maksimova T.A., Bauman Yu.I., Ayupov A.B., Mishakov I.V., Vedyagin A.A. // Int. J. Hydrogen Energy. 2024. V. 82. P. 662. https://doi.org/10.1016/j.ijhydene.2024.07.455
  31. Афонникова С.Д., Шишов Д.М., Веселов Г.Б., Аюпов А.Б., Бауман Ю.И., Мишаков И.В., Ведягин А.А., Шелепова Е.В. // Кинетика и катализ. 2025. Т. 66. № 4. С. 293–307.
  32. Pérez-Ramírez J., Berger R.J., Mul G., Kapteijn F., Moulijn J.A. // Catal. Today. 2000. V. 60. P. 93. https://doi.org/10.1016/S0920-5861(00)00321-7

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).