Influence of the composition and preparation method of KFeCo/γ-Al2O3 catalysts on their catalytic behaviour in the hydrocarbons synthesis from CO2

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A series of iron-containing catalysts supported on γ-Al2O3 and modified with potassium and cobalt were studied in the reaction of hydrocarbon synthesis from CO2. Samples from different series differed in the deposition method and component ratios. When preparing catalysts modified with cobalt and potassium by co-impregnation in excess of impregnation solution, an uneven distribution of cobalt and iron cations was observed on the catalyst surface. Applying iron and modifiers by consecutive impregnation in excess of impregnation solution with intermediate heat treatment in air allows for a uniform distribution of cobalt and iron cations. This leads to a significant increase in selectivity for C5+ hydrocarbons formation and a decrease in methane selectivity. For catalysts prepared by the consecutive impregnation method, the optimal cobalt-to-iron ratio was found to be nCo/nFe ≈ 0.35–0.45, along with an iron active component content of ωFe ≈ 4%.

About the authors

E. V Dokuchits

Boreskov Institute of Catalysis SB RAS

Email: oschtan@catalysis.ru
Novosibirsk, Russia

G. I Maltsev

Boreskov Institute of Catalysis SB RAS

Novosibirsk, Russia

A. V Ishchenko

Boreskov Institute of Catalysis SB RAS

Novosibirsk, Russia

T. P Minyukova

Boreskov Institute of Catalysis SB RAS

Novosibirsk, Russia

References

  1. Chen Y., Lubabu M.M. // Renew. Energy. 2026. V. 256. Art. 124052. https://doi.org/10.1016/j.renene.2025.124052
  2. Hamrouni D., Hasni R., Ouerghi I. // Environ. Sustain. Indic. 2025. V. 27. Art. 100817. https://doi.org/10.1016/j.indic.2025.100817
  3. Gür T.M. // Prog. Energy Combust. Sci. 2022. V. 89. Art. 100956. https://doi.org/10.1016/j.pecs.2021.100965
  4. Xie Zh., Tan Zh., Wang K., Shao B., Zhu Y., Li J., Mao Y., Hu J. // Energy Convers. Manag. 2025. V. 323. Art. 119269. https://doi.org/10.1016/j.enconman.2024.119269
  5. Xu D., Cao Y., Fan H., Hou G., Li Y., Huang S., He R., Zhang H., Zhang R., Ding M. // Sci. Bull. 2025. https://doi.org/10.1016/j.scib.2025.07.032
  6. Макарян И.А., Седов И.В., Савченко В.И. // Катализ в промышленности. 2023. Т. 23. № 4. С. 6. https://doi.org/10.18412/1816-0387-2023-4-6-32
  7. Evdokimenko N.D., Kustova A.L., Kim K.O., Igonina M.S., Kustov L.M. // Mendeleev Commun. 2018. V. 28. № 1–2. P. 147. https://doi.org/10.1016/j.mencom.2018.03.012
  8. Pokusaеva Ya.A., Koklin A.E., Lunin V.V., Bogdan V.I. // Mend. Comm. 2019. V. 29. № 4. P. 382. https://doi.org/10.1016/j.mencom.2019.07.007
  9. Dement’ev K.I., Dementeva O.S., Ivantsov M.I., Kulikova M.V., Magomedova M.V., Maximov A.L., Lyadov A.S., Starozhitskaya A.V., Chudakova M.V. // Pet. Chem. 2022. V. 62. № 5. P. 445. https://doi.org/10.1134/S0965544122050012
  10. Guo L., Yang H., Qiu J., Zhang T., Xu Y., Duan Z., Yang Y., Dai X., Liu L., Zhang Ch. // J. Environ. Chem. Eng. 2025. V. 13. № 5. Art. 117796. https://doi.org/10.1016/j.jece.2025.117796
  11. Riedel T., Schaub G., Jun K.-W., Lee K.-W. // Ind. Eng. Chem. Res. 2001. V. 40. P. 1355. https://doi.org/10.1021/ie000084k
  12. Li F., Su W., Fang Y., Yao K., Sun Y., Dai Ch., Zhao B. // Chem. Eng. J. 2025. V. 521. Art. 166365. https://doi.org/10.1016/j.cej.2025.166365
  13. Spennati E., Riani P., Garbarino G. // Catal. Today. 2023. V. 418. Art. 114131. https://doi.org/10.1016/j.cattod.2023.114131
  14. Кинпис М.А., Самохин П.В., Волнина Э.А., Магомедова М.В., Туркова Т.В. // Кинетика и катализ 2022. Т. 63. № 3. С. 351. https://doi.org/10.31857/S045388112203008X
  15. Кинпис М.А., Самохин П.В., Галкин Р.С., Волнина Э.А., Жиляева Н.А. // Кинетика и катализ. 2024. Т. 65. № 1. С. 67. https://doi.org/10.31857/S0453881124010065
  16. Istadi I., Fani F., Riyanto T., Anggoro D.D., Jongsomjiti B., Putranto A.B. // J. Ind. Eng. Chem. 2025. V. 149. P. 1. https://doi.org/10.1016/j.jiec.2025.01.046
  17. Lox E.S., Froment G.F. // Ind. Eng. Chem. Res. 1993. V. 32. № 1. P. 71. https://doi.org/10.1021/ie00013a011
  18. Puga A.V. // Catal. Sci. Technol. 2018. V. 8, P. 5681. https://doi.org/10.1039/c8cy01216d
  19. Ma L., Wang B., Fan M., Ling L., Zhang R. // Chem. Eng. J. 2023. V. 466. Art. 143278. https://doi.org/10.1016/j.cej.2023.143278
  20. Dorner R.W., Hardy D.R., Williams F.W., Willauer H.D. // Energy Environ. Sci. 2010. V. 3. P. 884. https://doi.org/10.1039/C001514H
  21. Malina O., Jakubec P., Kašlík J., Tuček J., Zbořil R. // Nanoscale. 2017. V. 9. P. 10440. https://doi.org/10.1039/C7NR02383A
  22. Kraleva E., Lund H., Weiß J., Bartling S., Atia H., Cherkezova-Zheleva Z., Paneva D., Wohlrab S., Armbruster U. // Appl. Catal. Gen. 2024. V. 683. Art. 119857. https://doi.org/10.1016/j.apcata.2024.119857
  23. Zhang Y, Fu D., Liu X., Zhang Zh., Zhang Ch., Shi B., Xu J., Han Y.-F. // ChemCatChem. 2017. V. 10. P. 1272. https://doi.org/10.1002/cctc.201701779
  24. Sathawong R., Koizumi N., Song Ch., Prasassarakich P. // J. CO2 Util. 2013. V. 3–4. P. 102. https://doi.org/10.1016/j.jcou.2013.10.002
  25. Yao B., Xiao T., Makgae O.A., Jie X., Gonzalez-Cortes S., Guan Sh., Kirkland A.I., Dilworth J.R., Al-Megren H.A., Alshihri S.M., Dobson P.J., Owen G.P., Thomas J.M., Edwards P.P. // Nature Commun. 2020. V. 11. P. 6395. https://doi.org/10.1038/s41467-020-20214-z
  26. Zhang J., Yuan F., Zhang A., Zhang G., Ren L., Song Ch., Guo X. // Fuel 2024. V. 357. № B. Art. 129904. https://doi.org/10.1016/j.fuel.2023.129904
  27. Martinelli M., Visconti C.G., Lietti L., Forzatti P., Bassano C., Deiana P. // Catal. Today. 2014. V. 228. P. 77. https://doi.org/10.1016/j.cattod.2013.11.018
  28. Bradley M.J., Ananth R., Willauer H.D., Baldwin J.W., Hardy D.R., Williams F.W. // Molecules. 2017. V. 22. № 9. P. 1579. https://doi.org/10.3390/molecules22091579
  29. Xi X., Zeng F., Zhang H., Wu X., Ren J., Bisswanger T., Stampfer Ch., Hofmann J.P., Palkovits R., Heeres H.J. // ACS Sustain. Chem. Eng. 2021. V. 9. № 18. P. 6235. https://doi.org/10.1021/acssuschemeng.0c08760
  30. Dokuchits E.V., Tikhov S.F., Valeev K.R., Kardash T.Yu., Salanov A.N., Lisitsyn A.S., Yakovlev I.V., Lapina O.B., Minyukova T.P. // Kinet. Catal. 2025. V. 66. № 1. P. 76. https://doi.org/10.1134/S0023158424601864
  31. Choi P.H., Jun K.-W., Lee S.-J., Choi M.-J., Lee K.-W. // Catal. Lett. 1996. V. 40. P. 115. https://doi.org/10.1007/BF00807467
  32. Sathawong R., Koizumi N., Song C., Prasassarakich P. // J. CO2 Util. 2013. V. 3–4. P. 102. https://doi.org/10.1016/j.jcou.2013.10.002
  33. Saeidi S., Najari S., Fazlollahi F., Nikoo M.K., Sefidkon F., Klemeš J.J., Baxter L.L. // Renew. Sustain. Energy Rev. 2017. V. 80. P. 1292. https://doi.org/10.1016/j.rser.2017.05.204

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).