Математическое моделирование сложных колебаний скорости реакции окисления этилена на никелевом катализаторе

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Работа посвящена экспериментальному и теоретическому исследованию сложных колебательных режимов в реакции окисления этилена на никелевой фольге. Построена математическая модель, которая представляет собой систему из 12 обыкновенных дифференциальных уравнений, основанных на 14-стадийном механизме реакции окисления этилена, включающем стадии окисления и восстановления Ni-катализатора. Существенным условием возникновения сложного динамического поведения системы является адсорбция С2Н4 и СО из мобильного предадсорбционного состояния. Показано, что при реальных значениях параметров математическая модель может описать как регулярные, так и нерегулярные колебания, а также наблюдающиеся в эксперименте “mixed-mode” колебания. Впервые продемонстрировано, что в одной модели при разных значениях параметров возможны колебания, имеющие разные свойства и разный механизм их возникновения. Колебания могут возникать в результате сильной зависимости скорости реакции от концентрации активных мест как за счет изменения концентрации поверхностного оксида, так и за счет изменения концентрации поверхностного углерода.

Об авторах

М. М. Слинько

ФГБУН Институт химической физики РАН им. Н.Н. Семенова

Email: slinko@polymer.chph.ras.ru
ул. Косыгина, 4, Москва, 119334 Россия

Н. Л. Семендяева

ФГБОУ ВО МГУ им. М.В. Ломоносова, Факультет вычислительной математики и кибернетики; Shenzhen MSU-BIT University, Faculty of Computational Mathematics and Cybernetics

Email: slinko@polymer.chph.ras.ru
Ленинские Горы, 1, стр. 52, Москва, 119992 Россия; International University Park Road, Dayun New Town, Longgang District, Shenzhen, 518172 China

А. Г. Макеев

ФГБОУ ВО МГУ им. М.В. Ломоносова, Факультет вычислительной математики и кибернетики

Email: slinko@polymer.chph.ras.ru
Ленинские Горы, 1, стр. 52, Москва, 119992 Россия

В. Ю. Бычков

ФГБУН Институт химической физики РАН им. Н.Н. Семенова

Автор, ответственный за переписку.
Email: slinko@polymer.chph.ras.ru
ул. Косыгина, 4, Москва, 119334 Россия

Список литературы

  1. Margolis L.Ya. // Adv. Catal. 1963. V. 14. P. 429. https://doi.org/10.1016/S0360-0564(08)60342-9
  2. Smolakova L., Kout M., Koudelkova E., Čapek L. // Ind. Eng. Chem. Res. 2015. V. 54. P. 12730. https://doi.org/10.1021/acs.iecr.5b03425
  3. Saraev A.A, Vinokurov Z.S, Kaichev V.V, Shmakov A.N, Bukhtiyarov V.I. // Catal. Sci. Technol. 2017. V. 7. P. 1646. https://doi.org/10.1039/C6CY02673G
  4. Kaichev V.V., Gladky A.Y., Prosvirin I.P., Saraev A.A., Hävecker M., Knop-Gericke A., Schlögl R., Bukhtiyarov V.I. // Surf. Sci. 2013. V. 609. P. 113. http://dx.doi.org/10.1016/j.susc.2012.11.012
  5. Zhang X.L., Mingos D.M.P., Hayward D.O. // Catal. Lett. 2001. V. 72. P. 147. https://doi.org/10.23/A:1009036128275
  6. Bychkov V.Yu., Tyulenin Yu.P., Slinko M.M., Korchak V.N. // Catal. Lett. 2007. V. 119. P. 339. https://doi.org/10.1007/s10562-007-9241-3
  7. Gladky A.Yu., Ermolaev V.K., Parmon V.N. // Catal. Lett. 2001. V. 77. P. 103. https://doi.org/10.23/A:1012703631994
  8. Bychkov V.Y., Tyulenin Y.P., Slinko M.M., Lomonosov V.I., Korchak V.N. // Catal. Lett. 2018. V. 148. P. 3646. https://doi.org/10.1007/s10562-018-2578-y
  9. Bychkov V.Yu., Tyulenin Yu.P., Slinko M.M., Korchak V.N. // Proc. of the IX International Conference “Mechanisms of catalytic reactions”. St. Petersburg, Russia. 2012. P. 165. https://doi.org/10.1595/147106713X660233
  10. Слинько М.М., Макеев А.Г. // Кинетика и катализ. 2020. Т. 61. № 4. С. 495. https://doi.org/10.1134/S0023158420040114
  11. Slinko M.M., Korchak V.N. Peskov N.V. // Appl. Catal. A: Gen. 2006. V. 303. № 2. P. 258. https://doi.org/10.1016/j.apcata.2006.02.010
  12. Lashina E.A., Kaichev V.V., Saraev A.A., Vinokurov Z.S., Chumakova N.A., Chumakov G.A., Bukhtiyarov V.I. // J. Phys. Chem. A. 2017. V. 121. P. 6874. https://doi.org/10.1021/acs.jpca.7b04525
  13. Ustyugov V.V, Kaichev V.V., Lashina E.A., Chumakova N.A., Bukhtiyarov V.I. // Kinet. Catal. 2016. V. 57. P. 113. https://doi.org/10.1134/S0023158415060142
  14. Lashina E.A., Kaichev V.V., Saraev A.A., Vinokurov Z.S., Chumakova N.A., Chumakov G.A., Bukhtiyarov V.I. // Top. Catal. 2020. V. 63. P. 33. https://doi.org/10.1007/s11244-019-01219-5
  15. Krisher K., Eiswirth M., Ertl G. // J. Chem. Phys. 1992. V. 96. P. 9161. https://doi.org/10.1063/1.462226
  16. Makeev A.G., Nieuwenhuys B.E. // J. Chem. Phys. 1998. V. 108. P. 3740. https://doi.org/10.1063/1.475767
  17. Stuckless J.T., Wartnaby C.E., Al-Sarraf N., Dixon-Warren St. J.B., Kovar M., King D.A. // J. Chem. Phys. 1997. V. 106. P. 2012. https://doi.org/10.1063/1.473308
  18. Kisliuk P. // J. Phys. Chem. Solids. 1957. V 3. P. 95. https://doi.org/10.1016/0022-3697(57)90054-9
  19. Hasse W., Günter H.L., Henzler M. // Surf. Sci. 1983. V. 126. P. 479. https://doi.org/10.1016/0039-6028(83)90746-X
  20. Stuckless J.T., Al-Sarraf N., Wartnaby C., King D.A. // J. Chem. Phys. 1993. V. 99. P. 2202. https://doi.org/10.1063/1.465282
  21. Winkler A., Rendulic K.D. // Surf. Sci. 1982. V. 118. P. 19. https://doi.org/10.1016/0039-6028(82)90010-3
  22. Brown W.A., Kose R., King D.A. // Chem. Rev. 1998. V. 98. P. 797. https://doi.org/10.1021/cr9700890
  23. Klimesch P., Henzler M. // Surf. Sci. 1979. V. 90. P. 57. https://doi.org/10.1016/0039-6028(79)90009-8
  24. Feigerle C.S., Desai S.R., Overbury S.H. // J. Chem. Phys. 1990. V. 93. P. 787. https://doi.org/10.1063/1.459532
  25. Madix R.J., Ertl G., Christmann K. // Chem. Phys. Lett. 1979. V. 62. P. 38. https://doi.org/10.1016/0009-2614(79)80408-X
  26. Delgado K.H., Maier L., Tischer S., Zellner A., Stotz H., Deutschmann O. // Catalysts. 2015. V. 5. P. 871. https://doi.org/10.3390/catal5020871
  27. Yang W.S., Xiang H.W., Li Y.W., Sun Y.H. // Catal. Today. 2000. V. 61. P. 237. https://doi.org/10.1016/S0920-5861(00)00368-0
  28. Maier L., Schädel B., Delgado K.H., Tischer S., Deutschmann O. // Top. Catal. 2011. V. 54. P. 845. https://doi.org/10.1007/s11244-011-9702-1
  29. Monnerat B., Kiwi-Minsker L., Renken A. // Chem. Eng. Sci. 2003. V. 58. P. 4911. https://doi.org/10.1016/j.ces.2002.11.006
  30. Sales B.C., Turner J.E., Maple M.B. // Surf. Sci. 1982. V. 114. P. 381. https://doi.org/10.1016/0039-6028(82)90692-6
  31. Bychkov V.Yu., Tulenin Yu.P., Slinko M.M., Gordienko Yu.A., Korchak V.N. // Catal. Lett. 2018. V. 148. P. 653. https://doi.org/10.1007/s10562-017-2283-2
  32. Makeev A.G., Peskov N.V., Semendyaeva N.L., Slinko M.M., Bychkov V.Yu., Korchak V.N. // Chem. Eng. Sci. 2019. V. 207. P. 644. https://doi.org/10.1016/j.ces.2019.06.053
  33. Bowker M. // Top. Catal. 2016. V. 59. P. 663. https://doi.org/10.1007/s11244-016-0538-6
  34. Zuhr R.A., Hudson J.B. // Surf. Sci. 1977. V. 66. P. 405. https://doi.org/10.1016/0039-6028(77)90028-0
  35. Behm R.J., Ertl G., Penka V. // Surf. Sci. 1985. V. 160. P. 387. https://doi.org/10.1016/0039-6028(85)90782-4

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).