Влияние наноразмерного оксидного наполнителя на структуру и проводимость композита (1 – x)(LiClO4–NaClO4)–xAl2O3

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Методами спектроскопии комбинационного рассеяния света (КРС), дифференциальной сканирующей калориметрии (ДСК) и импедансной спектроскопии исследованы физико-химические свойства эвтектической системы 78.2LiClO4–21.8NaClO4 и ее гетерогенных композитов с наноразмерным порошком оксида алюминия при различных температурах, фазовых состояниях и концентрациях Al2O3. Добавка Al2O3 приводит к увеличению ионной проводимости и уменьшению энергии активации. Методом спектроскопии КРС показано, что добавка оксида алюминия приводит к образованию аморфной фазы за счет “разрушения” кристаллической фазы перхлората натрия.

Об авторах

З. Ю. Кубатаев

Дагестанский федеральный исследовательский центр РАН, АЦКП ИФ ДФИЦ РАН

Email: kzu-05@ya.ru
Россия, Махачкала

М. М. Гафуров

Дагестанский федеральный исследовательский центр РАН, АЦКП ИФ ДФИЦ РАН

Email: kzu-05@ya.ru
Россия, Махачкала

К. Ш. Рабаданов

Дагестанский федеральный исследовательский центр РАН, АЦКП ИФ ДФИЦ РАН

Email: kzu-05@ya.ru
Россия, Махачкала

А. М. Амиров

Дагестанский федеральный исследовательский центр РАН, АЦКП ИФ ДФИЦ РАН

Email: kzu-05@ya.ru
Россия, Махачкала

М. А. Ахмедов

Дагестанский федеральный исследовательский центр РАН, АЦКП ИФ ДФИЦ РАН

Email: kzu-05@ya.ru
Россия, Махачкала

М. Г. Какагасанов

Дагестанский федеральный исследовательский центр РАН, АЦКП ИФ ДФИЦ РАН

Автор, ответственный за переписку.
Email: kzu-05@ya.ru
Россия, Махачкала

Список литературы

  1. Duan, Y., Bai, X., Yu, T., Rong, Y., Wu, Y., and Wang, X., Research progress and prospect in typical sulfide solid-state electrolytes, J. Energy Storage, 2022, vol. 55, p. 105382. https://doi.org/10.1016/j.est.2022.105382
  2. Han, L., Lehmann, M.L., Zhu, J., Liu, T., Zhou, Z., Tang, X., Heish, C.Te, Sokolov, A.P., Cao, P., Chen, X.C., and Saito, T., Recent Developments and Challenges in Hybrid Solid Electrolytes for Lithium-Ion Batteries, Frontiers in Energy Research, 2020, p. 1. https://doi.org/10.3389/fenrg.2020.00202
  3. Пантюхина, М.И., Плаксин, С.В., Саетова, Н.С., Расковалов, А.А. Новый твердый электролит Li8 ‒ xZr1 – xTaxO6 (x = 0–0.5) для литиевых источников тока. Электрохимия. 2019. Т. 55. С. 1543. [Pantyukhina, M.I., Plaksin, S.V., Saetova, N.S., and Raskovalov, A.A., New solid elerolyte Li8 – xZr1 – xTaxO6 (x = 0–0.5) for lithium power sources, Russ. J. Electrochem., 2019, vol. 55, p. 1269.]
  4. Joos, M., Conrad, M., Moudrakovski, I., Terban, M.W., Rad, A., Kaghazchi, P., Merkle, R., Dinnebier, R.E., Schleid, T., and Maier, J., Ion Transport Mechanism in Anhydrous Lithium Thiocyanate LiSCN Part II: Frequency Dependence and Slow Jump Relaxation, Phys. Chem. Chem. Phys., 2022, vol. 24, p. 20198. https://doi.org/10.1039/D2CP01837C
  5. Liang, C.C., Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes, J. Electrochem. Soc., 1973, vol. 120, p. 1289.
  6. Uvarov, N.F, Ulihin, A.S., and Mateyshina, Y.G., Nanocomposite Alkali-Ion Solid Electrolytes, Advanced Nanomaterials for Catalysis and Energy, 2022, p. 393. https://doi.org/10.1039/D2CP01837C
  7. Chen, L., Cros, C., Castagnet, R., and Hagenmuller, P., Electrical conductivity enhancement in an eutectic system containing dispersed second phase particles, Solid State Ionics, 1988, vol. 31, p. 209.
  8. Рабаданов, К.Ш., Гафуров, М.М., Кубатаев, З.Ю., Амиров, А.М., Ахмедов, М.А., Шабанов, Н.С., Атаев, М.Б. Ионная проводимость и колебательные спектры композитов LiNO3–KNO3 + Al2O3. Электрохимия. 2019. Т. 55. С. 750. [Rabadanov, K.S., Gafurov, M.M., Kubataev, Z.Y., Amirov, A.M., Akhmedov, M.A., Shabanov, N.S., and Ataev, M.B., Ion Conductivity and vibrational spectra of LiNO3–KNO3 + Al2O3 composites, Russ. J. Electrochem., 2019, vol. 55, p. 573.]
  9. Закирьянова, И.Д., Николаева, Е.В., Бове, А.Л., Антонов. Б.Д. Электропроводность и спектры комбинационного рассеяния света дисперсных систем α-Al2O3–расплав Li2CO3–Na2CO3–K2CO3–NaCl. Расплавы. 2018. № 1. С. 80. https://doi.org/10.7868/S0235010618010097
  10. Gafurov, M.M., Rabadanov, K.S., Ataev, M.B., Amirov, A.M., Akhmedov, M.A., Shabanov, N.S., Kubataev, Z.Y., and Rabadanova, D.I., Research of the structure and dynamic interactions of particles in the Li0.42K0.58NO3–R (R = α-Al2O3, γ-Al2O3, SiO2) and (LiNO3–LiClO4)–γ-Al2O3 composites in various temperature condition and phase states, Spectrochim. Acta, 2021, vol. 257, p. 119765.
  11. Ulihin, A.S., Uvarov, N.F., Mateyshina, Y.G., Brezhneva, L.I., and Matvienko, A.A., Composite solid electrolytes LiClO4–Al2O3, Solid State Ionics, 2006, vol. 177, p. 2787.
  12. Gafurov, M.M. and Rabadanov, K.S., High-temperature vibrational spectroscopy of molten electrolytes, Applied Spectroscopy Reviews, 2022, p. 1. https://doi.org/10.1080/05704928.2022.2048305
  13. Sulaiman, M., Che Su, N., and Mohamed, N., Sol-gel synthesis and characterization of β-MgSO4:Mg(NO3)2–MgO composite solid electrolyte, Ionics, 2017, vol. 23, p. 443. https://doi.org/10.1007/s11581-016-1854-3
  14. Wu, Cheng-Wei, Ren, Xue, Zhou, Wu-Xing, Xie, Guofeng, and Zhang, Gang, Thermal stability and thermal conductivity of solid electrolytes, APL Materials, 2022, vol. 10, p. 040902. https://doi.org/10.1063/5.0089891
  15. Amirov, A.M., Suleymanov, S.I., Gafurov, M.M., Ataev, M.B., and Rabadanov, K.S. Study of the MNO3–Al2O3 nanocomposites by differential scanning calorimetry, J. Thermal Analysis and Calorimetry, 2022, vol. 147, p. 9283. https://doi.org/10.1007/s10973-022-11256-0
  16. Накамото, К. ИК-спектры и спектры КР неорганических и координационных соединений (пер. с англ.). М.: Мир, 1991. С. 536. [Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley-Interscience, 1991. p. 536.]

Дополнительные файлы


© З.Ю. Кубатаев, М.М. Гафуров, К.Ш. Рабаданов, А.М. Амиров, М.А. Ахмедов, М.Г. Какагасанов, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».