Ions transport properties in polymer gel electrolytes with introduction of ionic liquid for lithium electrochemical systems
- Authors: Slesarenko N.A.1, Chernyak A.V.1,2, Khatmullina K.G.1,3, Yudina A.V.1, Slesarenko A.A.1, Chernyaev D.A.1, Yarmolenko O.V.1
-
Affiliations:
- FRC of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
- Institute of Solid State Physics named after Yu. A. Osipyan RAS
- National Research University “Moscow Power Engineering Institute”
- Issue: Vol 61, No 6 (2025)
- Pages: 273-286
- Section: Articles
- URL: https://bakhtiniada.ru/0424-8570/article/view/319287
- DOI: https://doi.org/10.7868/S3034618525060013
- ID: 319287
Cite item
Abstract
The study focused on the competitive ionic and molecular transport characteristics of four polymer gel electrolyte compositions synthesized through the radical polymerization of polyethylene glycol diacrylate, incorporating LiBF4 salt, 1-ethyl-3-methylimidazolium tetrafluoroborate, and various organic solvents: dioxolane (DOL), diglyme (G2), tetraglyme (G4), and ethylene carbonate (EC). The aim was to identify a composition with the highest mobility for the Li+ cation. Flexible films of the polymer gel electrolytes were analyzed using differential scanning calorimetry, thermogravimetric analysis, and Fourier transform infrared spectroscopy. The features of ionic and molecular transport were investigated using pulsed field gradient NMR in conjunction with electrochemical impedance spectroscopy. The total conductivity of these systems ranged from 1.8 to 4.1 mS cm–1 at room temperature. Although the composition with EC exhibited high ionic conductivity, the mobility of the Li+ cation at room temperature increased in the following order: Li+(EC)4 < Li+(DOL)4 < Li+(G4) < Li+(G2)2. Calculating the hydrodynamic radius of the lithium cation revealed that for Li+(EC)4 and Li+(DOL)4, the radius decreased with rising temperature; for Li+(G2)2, it remained nearly constant; while for Li+(G4), it exhibited an abnormal increase. This unusual behavior is likely due to the re-solvation of the lithium cation from the polymer matrix into tetraglyme. In assessing the compatibility of the polymer gel electrolytes with metallic lithium, it was found that electrolyte compositions containing tetraglyme, diglyme, and ethylene carbonate show promise for further research and potential application as electrolytes in lithium power sources.
About the authors
N. A. Slesarenko
FRC of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Email: n.slesarenko@icp.ac.ru
Chernogolovka, Russia
A. V. Chernyak
FRC of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences; Institute of Solid State Physics named after Yu. A. Osipyan RAS
Email: n.slesarenko@icp.ac.ru
Chernogolovka, Russia; Chernogolovka, Russia
K. G. Khatmullina
FRC of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences; National Research University “Moscow Power Engineering Institute”
Email: n.slesarenko@icp.ac.ru
Chernogolovka, Russia; Moscow, Russia
A. V. Yudina
FRC of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Email: n.slesarenko@icp.ac.ru
Chernogolovka, Russia
A. A. Slesarenko
FRC of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Email: n.slesarenko@icp.ac.ru
Chernogolovka, Russia
D. A. Chernyaev
FRC of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Author for correspondence.
Email: n.slesarenko@icp.ac.ru
Chernogolovka, Russia
O. V. Yarmolenko
FRC of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Email: oyarm@mail.ru
Chernogolovka, Russia
References
- Lopez, J., Mackanic, D.G., Cui, Y., and Bao, Z., Designing polymers for advanced battery chemistries, Nat. Rev. Mater., 2019, vol. 4, p. 312. doi: 10.1038/s41578–019–0103–6
- Song, Z., Chen, F., Martinez-Ibañez, M., Feng, W., Forsyth, M., Zhou, Z., Armand, M., and Zhang, H., A reflection on polymer electrolytes for solid-state lithium metal batteries, Nat. Commun., 2023, vol. 14, p. 4884. doi: 10.1038/s41467-023-40609-y
- Bailey, E.J. and Winey, K.I., Dynamics of polymer segments, polymer chains, and nanoparticles in polymer nanocomposite melts: a review, Prog. Polym. Sci., 2020, vol. 105, p. 101242.
- Park, S., Chaudhary, R., Han, S.A., Qutaish, H., Moon, J., Park, M.-S., Kim, J.H., et al., Ionic conductivity and mechanical properties of the solid electrolyte interphase in lithium metal batteries, Energy Mater., 2023, vol. 3, p. 300005. doi: 10.20517/energymater.2022.65
- Rollo-Walker, G., Malic, N., Wang, X., Chiefari, J., and Forsyth, M., Development and Progression of Polymer Electrolytes for Batteries: Influence of Structure and Chemistry, Polymers, 2021, vol. 13, p. 4127. doi: 10.3390/polym13234127
- Herbers, L., Küpers, V., Winter, M., and Bieker, P., An ionic liquid- and PEO-based ternary polymer electrolyte for lithium metal batteries: an advanced processing solvent-free approach for solid electrolyte processing, RSC Adv., 2023, vol. 13, p. 17947. doi: 10.1039/d3ra02488a
- Черняк, А.В., Березин, М.П., Слесаренко, Н.А., Забродин, В.А., Волков, В.И., Юдина, А.В., Шувалова, Н.И., Ярмоленко, О.В. Влияние структуры сетчатого полимерного гель-электролита на ионную и молекулярную подвижность электролитной системы соль LiBF4 – ионная жидкость 1-этил-3-метилимидазолий тетрафторборат. Изв. АН. Сер. хим. 2016. Т. 65. С. 2053. [Chernyak, A.V., Berezin, M.P., Slesarenko, N.A., Zabrodin, V.A., Volkov, V.I., Yudina, A.V., Shuvalova, N.I., and Yarmolenko, O.V., Influence of the reticular polymeric gel-electrolyte structure on ionic and molecular mobility of an electrolyte system salt-ionic liquid: LiBF4–1-ethyl-3-methylimidazolium tetrafluoroborate, Russ. Chem. Bull., Int. Ed., 2016, vol. 65, no. 8, p. 2053.] doi: 10.1007/s11172-016-1551-4
- Wan, J., Wan, M., Hou, X., Vangosa, F.B., Bresser, D., Li, J., and Paillard, E., Combining ternary, ionic liquid-based, polymer electrolytes with a single-ion conducting polymer based interlayer for lithium metal batteries, Energy Mater., 2024, vol. 4, p. 400074. doi: 10.20517/energymater.2024.50
- Correia, D.M., Fernandes, L.C., Martins, P.M., García-Astrain, C., Costa, C.M. Reguera, J., and Lanceros-Méndez, S., Ionic liquid–polymer composites: a new platform for multifunctional applications, Adv. Funct. Mater., 2020, vol. 30, p. 1909736. doi: 10.1002/adfm.201909736
- Ma, X., Yu, J., Hu, Y., Texter, J., and Yan, F., Ionic liquid/poly(ionic liquid)-based electrolytes for lithium batteries, Ind. Chem. Mater., 2023, vol. 1, p. 39. doi: 10.1039/d2im00051b
- Gupta, H. and Singh, R.K., Ch. 5. Ionic Liquid-Based Gel Polymer Electrolytes for Application in Rechargeable Lithium Batteries / Haider, S., Haider, A., Khodaei, M., and Chen, L., ed. Energy Storage Battery Systems – Fundamentals and Applications [Internet]. Intech Open; 2021. ISBN978-1-83962-907-5. doi: 10.5772/intechopen.93397
- Pei, Y., Zhang, Y., Ma, J., Fan, M., Zhang, S., and Wang, J., Ionic liquids for advanced materials, Mater. Today Nano, 2022, vol. 17, p. 100159. doi: 10.1016/j.mtnano.2021.100159
- Tripathi, A.K., Ionic liquid–based solid electrolytes (ionogels) for application in rechargeable lithium battery, Mater. Today Energy, 2021, vol. 20, p. 100643. doi: 10.1016/j.mtener.2021.100643
- Qi, H., Ren, Y., Guo, S., Wang, Y., Li, S., Hu, Y., and Yan, F., High-voltage resistant ionic liquids for lithium-ion batteries, ACS Appl. Mater. Interfaces, 2020, vol. 12, p. 591. doi: 10.1021/acsami.9b16786
- Karuppasamy, K., Theerthagiri, J., Vikraman, D., Yim, C.-J., Hussain, S., Sharma, R., Maiyalagan, T., Qin, J., and Kim, H.-S., Ionic Liquid-Based Electrolytes for Energy Storage Devices: A Brief Review on Their Limits and Applications, Polymers, 2020, vol. 12, p. 918. doi: 10.3390/polym12040918
- Wang, X., Jin, L., Feng, W., et al., Opportunities for ionic liquid-based electrolytes in rechargeable lithium batteries, Sci. China Chem., 2023, vol. 66, p. 3443. doi: 10.1007/s11426-023-1827-0
- Yarmolenko, O.V., Khatmullina, K.G., Baymuratova, G.R., Emelianov, N.A., Baimuratova, R.K., and Yudina, A.V., Influence of TiO2 and SiO2 Nanoparticles on the Properties of Polymer Electrolytes Based on Ionic Liquid and Lithium Salt, High Energy Chemistry, 2023, vol. 57, Suppl. 2, p. S375. doi: 10.1134/S0018143923080258
- Slesarenko, N.A., Chernyak, A.V., Khatmullina, K.G., Baymuratova, G.R., Yudina, A.V., Tulibaeva, G.Z., Shestakov, A.F., Volkov, V.I., and Yarmolenko, O.V., Nanocomposite Polymer Gel Electrolyte Based on TiO2 Nanoparticles for Lithium Batteries, Membranes, 2023, vol. 13, p. 776. doi: 10.3390/membranes13090776
- Khatmullina, K.G., Slesarenko, N.A., Chernyak, A.V., Baymuratova, G.R., Yudina, A.V., Berezin, M.P., Tulibaeva, G.Z., Slesarenko, A.A., Shestakov, A.F., and Yarmolenko, O.V., New network polymer electrolytes based on ionic liquid and SiO2 Nanoparticles for energy storage systems, Membranes, 2023, vol. 13, p. 548. doi: 10.3390/membranes13060548
- Volkov, V.I., Yarmolenko, O.V., Chernyak, A.V., Slesarenko, N.A., Avilova, I.A., Baymuratova, G.R., and Yudina, A.V., Polymer electrolytes for lithium ion batteries studied by NMR techniques (Review), Membranes, 2022, vol. 12, p. 416. doi: 10.3390/membranes12040416
- Suh, K.-J., Hong, Y.-S., Skirda, V.D., Volkov, V.I., Lee, C.-Y.J., and Lee, C.-H., Water Self-Diffusion Behavior in Yeast Cells Studied by Pulsed Field Gradient NMR, Biophys. Chem., 2003, vol. 104, p. 121. doi: 10.1016/S0301-4622(02)00361-7
- Hayamizu, K. and Aihara, Y., Ion and Solvent Diffusion and Ion Conduction of PC-DEC and PC-DME Binary Solvent Electrolytes of LiN(SO2CF3)2, Electrochim. Acta, 2004, vol. 49, p. 3397. doi: 10.1016/j.electacta.2004.03.007
- Слесаренко, А.А., Тулибаева, Г.З., Юдина, А.В., Слесаренко, Н.А., Шестаков, А.Ф., Ярмоленко, О.В. Низкотемпературные загущенные электролиты на основе соли LiN(SO2CF3)2 в смешанных растворах глимов для литиевых источников тока. Известия АН. Сер. хим. 2024. Т. 73. С. 1. [Slesarenko, A.A., Tulibaeva, G.Z., Yudina, A.V., Slesarenko, N.A., Shestakov, A.F., and Yarmolenko, O.V., Low-temperature gelled electrolytes based on the salt LiN(SO2CF3)2 in mixed glyme solutions for lithium power sources, Russ. Chem. Bull., Int. Ed., 2024, vol. 73, no. 11, p. 1.]
- Тулибаева, Г.З., Шестаков, А.Ф., Волков, В.И., Ярмоленко, О.В. Строение сольватных комплексов LiBF4 в этиленкарбонате по данным ЯМР-спектроскопии высокого разрешения и квантово-химического моделирования. Журн. физ. химии. 2018. Т. 92. С. 625. [Tulibaeva, G.Z., Shestakov, A.F., Volkov, V.I., and Yarmolenko, O.V., Structure of LiBF4 Solvate Complexes in Ethylene Carbonate, Based on High-Resolution NMR and Quantum-Chemica Data, Russ. J. Physical Chemistry A, 2018, vol. 92, p. 747.] doi: 10.1134/S0036024418040313
- Баймуратова, Г.Р., Хатмуллина, К.Г., Тулибаева, Г.З., Якущенко, И.К., Трошин, П.А., Ярмоленко, О.В. Загущенный электролит на основе тетраглима для органических электродных материалов. Изв. АН. Сер. хим. 2022. Т. 71. С. 2108. [Baymuratova, G.R., Khatmullina, K.G., Tulibaeva, G.Z., Yakushenko, I.K., Troshin, P.A., and Yarmolenko, O.V., Gelled tetraglyme-based electrolyte for organic electrode materials, Russ. Chem. Bulletin, 2022, vol. 71, no. 10, p. 2108.]. doi: 10.1007/s11172-022-3634-8
- Wildenberg, A., Fenard, Y., Carbonnier, M., Keromnes, A., Lefort, B., Serinyel, Z., Dayma, G., Le Moyne, L., Dagaut, P., and Heufer, K.A., An experimental and kinetic modeling study on the oxidation of 1,3-dioxolane, Proc. Combust. Inst., 2021, vol. 38, p. 543. doi: 10.1016/j.proci.2020.06.362
- Shkrob, I.A., Zhu, Y., and Abraham, D.P., Reduction of Carbonate Electrolytes and the Formation of Solid-Electrolyte Interface (SEI) in Lithium-Ion Batteries. 1. Spectroscopic Observations of Radical Intermediates Generated in One-Electron Reduction of Carbonates, J. Phys. Chem. C, 2013, vol. 117, p. 19255. doi: 10.1021/jp406274e
Supplementary files
