Anodic dissolution and corrosion of Al in KOH solutions in 90% ethanol containing additives of gallium and indium compounds. Inhibitory effect of citric acid

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of addition of citric acid monohydrate on anodic dissolution and corrosion rate of aluminium in KOH solutions in 90% ethanol containing additives of gallium and indium compounds has been considered. It is shown that the introduction of citric acid monohydrate into the solution allows to reduce the magnitude of aluminium corrosion current without reducing the rate of its anodic dissolution. The inhibition efficiency of citric acid monohydrate when introduced into the solution at a concentration of 5∙10–4 M is 58%. The discharge galvanostatic curves in the above electrolyte show a flat discharge plateau up to a discharge current density of 16 mA/cm2.

Full Text

Restricted Access

About the authors

K. V. Rybalka

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Author for correspondence.
Email: mamaison2000@yandex.ru
Russian Federation, Moscow

L. A. Beketaeva

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: mamaison2000@yandex.ru
Russian Federation, Moscow

References

  1. Tommasi, D., Traité des pilles électriques, piles hidro-électriques-accumulateurs, piles thermo-électriques et pyro-électriques, Carré, G., Ed, Paris, 1889, p. 185.
  2. Despic, A. and Parkhutik, V.P., Electrochemistry of Aluminum in Aqueous Solutions and Physics of its Anodic Oxide, in ‘Modern Aspects of Electrochemistry. Conway, B.E., Bockris, J.O’M., and White, R.E., Eds, New York: Plenum Press, 1991, vol. 20, p. 401.
  3. Li, Q. and Bjerrum, N.J., Aluminum as anode for energy storage and conversion: a review, J. Power Sources, 2002, vol. 110, p. 1.
  4. Скундин, А.М., Осетрова, Н. В. Использование алюминия в низкотемпературных источниках тока. Электрохим. Энергетика. 2005. Т. 5. № 1. С. 3. [Skundin, A.M. and Osetrova, N.V., The use of aluminum in low-temperature current sources, Elektrokhim. Energet., 2005, vol. 5, no. 1, p. 3.]
  5. Levitin, G., Tel-Vered, R., Yarnitzky, C., and Licht, S., Organic solvents for anodic aluminum electrochemistry, Rev. Anal. Chem., 1999, vol. 18, p. 269.
  6. Licht, S., Levitin, G., Yarnitzky, C., and Tel-Vered, R., Organic phase for aluminum batteries, Electrochemical and solid-state letters, 1999, vol. 2, no. 6, p. 262.
  7. Licht, S., Tel-Vered, R., Levitin, G., and Yarnitzky, C., Solution activators of aluminum electrochemistry in organic media, J. Electrochem. Soc., 2000, vol. 147, no. 2, p. 496.
  8. Tel-Vered, R., Levitin, G., Yarnitzky, C., and Licht, S., Analytical determination of In activation of aluminum anodes in the organic phase, Rev. Anal. Chem., 1999, vol. 18, no. 5, p. 249.
  9. Licht, S., Levitin, G., Tel-Vered, R., and Yarnitzky, C., The effect of water on the anodic dissolution of aluminum in non-aqueous electrolytes, Electrochem. Commun., 2000, vol. 2, p. 329.
  10. Гонтмахер, Н.М., Григорьев, В.П., Нечаева, О.Н., Беркман, Е.А., Гутерман, В.Е., Петрова, Г. М. Растворение Al и сплава Al-Mg-Hg в органических и водно-органических средах. Электрохимия. 1984. Т. 20. С. 80. [Gontmakher, N.M., Grigoriev, V.P., Nechaeva, O.N., Berkman, E.A., Guterman, V.E., and Petrova, G.M., Dissolution of aluminum and Al-Mg-Hg alloys in organic and aqueous-organic solvents, Soviet Electrochemistry, 1984, vol. 20, p. 76.]
  11. Shao, H.B., Wang, J.M., Wang, X.Y., Zhang, J.Q., and Cao, C.N., Anodic dissolution of aluminum in KOH ethanol solutions, Electrochem. Commun., 2004, vol. 6, p. 6.
  12. Wang, J.B., Wang, J. M., Shao, H. B., Zhang, J.Q., and Cao, C.N., The corrosion and electrochemical behaviour of pure aluminium in alkaline methanol solutions, J. Appl. Electrochem., 2007, vol. 37, p. 753.
  13. Chang, X., Wang, J., Shao, H., Wang, J., Zeng, X., Zhang, J., and Cao, C., Corrosion and anodic behaviors of pure aluminum in a novel alkaline electrolyte, Acta Phys.-Chim. Sin., 2008, vol. 24(9), p. 1620.
  14. Wang, J.B., Wang, J.M., Shao, H.B., Chang, X.T., Wang, L., Zhang, J. Q., and Cao, C.N., The corrosion and electrochemical behavior of pure aluminum in additive-containing alkaline methanol–water mixed solutions, Mater. and Corr., 2009, vol. 60, no. 4, p. 269.
  15. Рыбалка, К.В., Бекетаева, Л. А. Влияние ионов Ga3+ и In3+ на анодное растворение Al в растворах КОН в этаноле. Электрохимия. 2023. Т. 59. С. 111. [Rybalka, K.V. and Beketaeva, L.A., Effect of Ga3+ and In3+ Ions on the Anodic Dissolution of Aluminum in KOH Ethanol Solutions, Russ. J. Electrochem., 2023, vol. 59, p. 162.]
  16. Рыбалка, К.В., Бекетаева, Л. А. Анодное растворение Al в растворах КОН в смешанном растворителе этанол/ацетонитрил. Электрохимия. 2023. Т. 59. С. 867. [Rybalka, K.V. and Beketaeva, L.A., Anodic dissolution of Al in KOH solutions of in the mixed ethanol/acetonitrile solvent, Russ. J. Electrochem., 2023, vol. 59, p. 1102.]
  17. Nie, Y., Gao, J., Wang, E., Jiang, L., An, L., and Wang, X., An effective hybrid organic/inorganic inhibitor for alkaline aluminum-air fuel cells, Electrochim. Acta, 2017, vol. 248, p. 478.
  18. Ma, C., Hu, C., Xu, X., Song, Y., Shao, M., Lin, J., and Jiang, Z., Inhibition Effect and Mechanism of Na2SnO3-Ethylene Glycol Hybrid Additives on 1060 Aluminum in Alkaline Aluminum-Air Batteries, Chem. Select, 2021, vol. 6, p. 1804. DOI.org/10.1002/slct.202004844
  19. Faegh, E., Shrestha, S., Zhao, X., and Mustain, W. E., In-depth structural understanding of zinc oxide addition to alkaline electrolytes to protect aluminum against corrosion and gassing, J. Appl. Electrochem., 2019, vol. 49, p. 895.
  20. Wang, X.Y., Wang, J.M., Wang Q. L., Shao, H.B., and Zhang, J.Q., The effects of polyethylene glycol (PEG) as an electrolyte additive on the corrosion behavior and electrochemical performances of pure aluminum in an alkaline zincate solution, Mater. and Corr., 2011, vol. 62, no. 12, p. 1149.
  21. Gelman, D., Lasman, I., Elfimchev, S., Starosvetsky, D., and Ein-Eli, Y., Aluminum corrosion mitigation in alkaline electrolytes containing hybrid inorganic/organic inhibitor system for power sources applications, J. Power Sources, 2015, vol. 285, p. 100.
  22. Sarangapani, K.B., Balaramachandran, V., Kapali, V., Venkatakrishna Iyer, S., and Potdar, G., Aluminium as the anode in primary alkaline batteries, Surface Technol., 1985, vol. 26, p. 67.
  23. Shao, H.B., Wang, J.M., Zhang, Z., and Cao, C.N., The cooperative effect of calcium ions and tartrate ions on the corrosion inhibition of pure aluminum in an alkaline solution, Mater. Chem. and Phys., 2002, vol. 77, p. 305.
  24. Moghadam, Z., Shabani-Nooshabadi, M., and Behpour, M., Electrochemical performance of aluminium alloy in strong alkaline media by urea and thiourea as inhibitor for aluminium-air batteries, J. Molec. Liquids, 2017, vol. 242, p. 971. doi: 10.1016/j.molliq.2017.07.119
  25. Wysocka, J., Cieslik, M., Krakowiak, S., and Ryl, J., Carboxylic acids as efficient corrosion inhibitors of aluminium alloys in alkaline media, Electrochim. Acta, 2018, vol. 289, p. 175.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Galvanostatic discharge curves on an Al electrode in a 2 M KOH solution in 90% ethanol containing 10–4 M Ga3+ and 10–3 M In3+ at different current densities.

Download (87KB)
3. Fig. 2. Dependencies: (a) the amount of electricity spent on the release of hydrogen on Al, (b) the corrosion current density of Al, on the time it is kept in a 2 M KOH solution in 90% ethanol containing 10–4 M Ga3+ and 10–3 M In3+ and the addition of citric acid monohydrate.

Download (219KB)
4. Fig. 3. Galvanostatic discharge curves on an Al electrode in a 2 M KOH solution in 90% ethanol containing 10–4 M Ga3+, 10–3 M In3+ and 5∙10–4 M citric acid monohydrate, at different current densities.

Download (88KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».