Synthesis and study of electric transport properties of REE polytungstates M10W22O81 (M–La, Nd)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The M10W22O81 (M–La, Nd, Ce) polytungstates of rare earth elements were synthesized by the solid-phase method and their electrical transport and thermal properties were studied. The electrical conductivity was measured by the electrochemical impedance method depending on the temperature and oxygen pressure in the gas phase. A combination of three methods (electrical conductivity versus oxygen pressure, transport numbers by the EMF method and the Tubandt method) established that the studied polytungstates are oxygen-ion conductors.

Full Text

Restricted Access

About the authors

N. N. Pestereva

El’tsyn Ural Federal University

Author for correspondence.
Email: Natalie.Pestereva@urfu.ru
Russian Federation, Yekaterinburg

A. F. Guseva

El’tsyn Ural Federal University

Email: Natalie.Pestereva@urfu.ru
Russian Federation, Yekaterinburg

A. A. Tushkova

El’tsyn Ural Federal University

Email: Natalie.Pestereva@urfu.ru
Russian Federation, Yekaterinburg

References

  1. Naveen Kumar, K., Vijayalakshmi, L., Hyeongyu, Bae, Kang, Taek Lee, Pyung, Hwang, and Jungwook, Choi, Optimization of sensitizer concentration for upconversion photoluminescence of Yb3+/Er3+: La10W22O81 nanophosphor rods, Ceram. Intern., 2021, vol. 47, p. 4563. https://doi.org/10.1016/j.ceramint.2020.10.021
  2. Kaczmarek, A.M., Ndagsi, D., Van Driessche, I., Van Hecke, K., and Van Deun, R., Green and blue emitting 3D structured Tb: Ce2(WO4)3 and Tb: Ce10W22O81 micromaterials, Dalton Transactions, 2015, vol. 44(22), p. 10237. https://doi.org/10.1039/c5dt00764j
  3. Naveen Kumar, K., Vijayalakshmi, L., Jiseok, Lim, and Jungwook, Choi, Non-cytotoxic Dy3+ activated La10W22O81 nanophosphors for UV based cool white LEDs and anticancer applications, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, vol. 278, 121309. https://doi.org/10.1016/j.saa.2022.121309
  4. Naveen Kumar, K., Vijayalakshmi, L., Pyung, Hwang, Ashish, D., Wadhwani, and Jungwook, Choi, Bright red-luminescence of Eu3+ ion-activated La10W22O81 microphosphors for noncytotoxic latent fingerprint imaging, J. Alloys and Compounds, 2020, vol. 840, 155589. https://doi.org/10.1016/j.jallcom.2020.155589
  5. Naveen Kumar, K., Vijayalakshmi, L., Gayeon, Lee, Gumin, Kang, Jiseok, Lim, and Jungwook, Choi, Robust color purity of reddish-orange emission from Sm3+-activated La10W22O81 biocompatible microphosphors for solid state lighting and anticancer applications, J. Rare Earths, 2023, vol. 41, p. 1850. https://doi.org/10.1016/j.jre.2022.09.013
  6. Pestereva, N., Guseva, А., Vyatkin, I., and Lopatin, D., Electrotransport in tungstates Ln2(WO4)3 (Ln = La, Sm, Eu, Gd), Solid State Ionics, 2017, vol. 301, p. 72. https://doi.org/ 10.1016/j.ssi.2017.01.009
  7. Пестерева, Н. Н., Вяткин, И. А., Лопатин, Д. А., Гусева, А.Ф. Природа ионной проводимости в вольфраматах лантанидов со структурой “дефектного шеелита”, Электрохимия. 2016. Т. 52. С. 1213. https://doi.org/10.7868/S0424857016110098 [Pestereva, N.N. Vyatkin, I.A. Lopatin, D.A., and Guseva, A.F., Nature of ionic conductivity of lanthanide tungstates with imperfect scheelite structure, Russ. J. Electrochem, 2016, vol. 52, p. 1082.] https://doi.org/10.1134/S1023193516110094
  8. Imanaka, N. and Tamura, S., Development of Multivalent Ion Conducting Solid Electrolytes, Bull. Chem. Soc. Japan, 2011, vol. 84 (4), p. 353. https://doi.org/10.1246/bcsj.20100178
  9. Köhler, J., Imanaka, N., and Adachi, G., New cation conducting solid electrolytes with the Sc2(WO4)3 type structure, Materials Science Forum, 1999, vol. 315–317, p. 537. https://doi.org/10.4028/www.scientific.net/msf.315-317.537
  10. Shlyakhtina, A.V., Baldin, E.D., Vorobieva, G.A., Kolbanev, I.V., Stolbov, D.N., Kasyanova, A.V., and Lyskov, N.V., Proton/oxygen ion conductivity ratio of Nd containing La10W2O21/ɤ-La6W2O15 tungstates, Solid State Ionics, 2023, vol. 48, p. 22671. https://doi.org/10.1016/j.ijhydene.2023.03.259
  11. Marie-Hélène, Chambrier, Armel, Le Bail, Fabien, Giovannelli, Abdelkrim, Redjaïmia, and Pierre, Florian, La10W2O21: An anion-deficient fluorite-related superstructure with oxide ion conduction, Inorg. Chem., 2014, vol. 53, p. 147. https://doi.org/10.1021/ic401801u
  12. Guseva, A., Pestereva, N., and Uvarov, N., New oxygen ion conducting composite solid electrolytes Sm2(WO4)3 – WO3, Solid State Ionics, 2023, vol. 394, 116196. https://doi.org/10.1016/j.ssi.2023.116196
  13. Guseva, A.F., Pestereva, N.N., Vostrotina, E.L., Otcheskikh, D.D., and Lopatin, D.A., Ionic conductivity of solid solutions and composites based on Sm2W3O12, Russ. J. Electrochem., 2020, vol. 56(5), p. 447. https://doi.org/10.1134/s1023193520050031
  14. Григорьева, Л.Ф. Диаграммы состояния систем тугоплавких оксидов: Справочник. Вып. № 5. Двойные системы. Ч. 4. Л.: Наука, 1988. 348 с. [Grigorieva, L.F., Phase diagrams of refractory oxide systems: Handbook. Issue No. 5. Binary systems. Part 4. L.: Nauka, 1988. 348 p.]
  15. Евдокимов, А.А., Ефремов, В.А., Трунов, В.К. и др. Соединения редкоземельных элементов. Молибдаты, вольфраматы. Институт общей и неорганической химии им. Н.С. Курнакова (Москва). М.: Наука, 1991. 267 с. [Evdokimov, A.A., Efremov, V.A., Trunov, V.K., et al. Compounds of rare earth elements. Molybdates, tungstates. N.S. Kurnakov Institute of General and Inorganic Chemistry (in Russian). Moscow: Nauka, 1991. p. 267.]
  16. Ефремов, В.А. Особенности кристаллохимии молибдатов и вольфраматов РЗЭ. Успехи химии. 1990. Т. 59. Вып. 7. С. 1085. [Efremov, V.A., Features of crystal chemistry of molybdates and tungstates of rare earth elements, Uspekhi Chemii, 1990, vol. 59, issue 7, p. 1085.]
  17. Yoshimura, M., Morikawa, H., and Miyake, M., Preparation and cell parameters of new rare-earth tungstates R10W22O81 (R = La, Ce, Pr and Nd), Mat. Res. Bull., 1975, vol. 10, p. 1221.
  18. Barker, R. S. and Radosavljevic, I., Structural characterization of RE10W22O81 rare-earth tungstates (RE = Ce, Nd), Acta Cryst., 2008, vol. 64, p. 708. https://doi.org/10.1107/S0108768108033430
  19. Grenthe, C., Guagliardi, A.A., Sundberg, M., and Werner, P.-E., Structure of Nd10W22O81 from high-resolution electron microscopy and X-ray powder diffraction, Acta Cryst., 2001, vol. B57, p. 13. https://doi.org/10.1107/S0108768100013203
  20. Patout, L., Jacob, D., Madjid, Arab, Carlson, Pereira de Souza, and Christine, Leroux, Monoclinic superstructure in the orthorhombic Ce10W22O81 from transmission electron microscopy, Acta crystallographica Section B: Structural crystallography and crystal chemistry, 2014, vol. 70, p. 268. https://doi.org/10.1107/S2052520613034252
  21. Patout, L., Hallaoui, A., Neisius, T., Campos, A.P.C., Dominici, C., Alfonso, C., and Charai, A., Origin of the superstructure elucidated by atomic resolution HAADF-STEM and HREM in the Ce10W22O81 lanthanide tungstate phase, J. Appl. Cryst., 2018, vol. 51, p. 344. https://doi.org/10.1107/S1600576718001103
  22. Loïc, Patout, Abdelali, Hallaoui, Aziz, Taoufyq, Christian, Dominici, Andrea, Porto, Carreiro, Campos, Claude, Alfonso, and Ahmed, Charai, Superstructures In The Scheelite-Type Rare Earth Doped Tungstate Phases. Materials Science. Structural materials, defects and phase transformations, Europ. Microscopy Congress, 2016. https://onlinelibrary.wiley.com/doi/book/10.1002/9783527808465 https://doi.org/10.1002/9783527808465.EMC2016.5182
  23. Гусева, А.Ф., Пестерева, Н.Н. Синтез и электрические свойства композитов Nd2(WO4)3–SiO2. Журн. неорган. химии. 2023. Т. 68. С. 426. [Guseva, A.F. and Pestereva, N.N., Synthesis and electrical properties of Nd2(WO4)3–SiO2 composites, Russ. J. Inorg. Chem., 2023, vol. 68, p. 363.] https://doi.org/10.31857/S0044457X2260164X

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. X-ray phase analysis data for La10W22O81 (а) and Nd10W22O81 (b).

Download (279KB)
3. Fig. 2. TG-DSC results: La10W22O81 (a), Nd10W22O81 (b).

Download (162KB)
4. Fig. 3. Impedance plots of La10W22O81 (а) at different temperatures and equivalent circuit.

Download (214KB)
5. Fig. 4. Temperature dependences of electrical conductivity of La10W22O81 (1) and Nd10W22O81 (2).

Download (89KB)
6. Fig. 5. Dependence of the conductivity of La10W22O81 and Nd10W22O81 on the oxygen pressure in the gas phase at different temperatures.

Download (147KB)
7. Fig. 6. Temperature dependence of the sum of ionic transfer numbers of La10W22O81 (1) and Nd10W22O81 (2) (EMF method).

Download (64KB)
8. Fig. 7. Diagrams of changes in the mass of La10W22O81 briquettes, t = 850°C, Q ≈ 90 Cl.

Download (41KB)

Note

2 Based on the materials of the report at the 17th International Meeting “Fundamental and applied problems of solid state ionics”, Chernogolovka, June 16–23, 2024.


Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».