Calibration of ARIMA-GARCH-Model of Basic Asset Price Based on Market Option Quotes
- 作者: Arbuzov P.A.1, Golembiovskiy D.Y.1
-
隶属关系:
- Lomonosov Moscow State University
- 期: 卷 61, 编号 3 (2025)
- 页面: 104-115
- 栏目: Mathematical analysis of economic models
- URL: https://bakhtiniada.ru/0424-7388/article/view/312218
- ID: 312218
详细
作者简介
P. Arbuzov
Lomonosov Moscow State University
Email: arbuzov.parb@gmail.com
Moscow, Russia
D. Golembiovskiy
Lomonosov Moscow State University
Email: dgolembiovskiy@yandex.ru
Moscow, Russia
参考
- Арбузов П. А., Голембиовский Д. Ю. (2024). Калибровка распределения Su-Джонсона будущей цены базового актива на основе цен опционов // Проблемы анализа риска. Т. 21. № 2. С. 78–93. [Arbuzov P. А., Golembiovsky D. Yu. (2024). Calibration of Johnson Su-distribution of future price of underlying asset based on option prices. Issues of Risk Analysis, 21 (2), 78–93 (in Russian).]
- Глухов М. (2009). Оценка опционов методом Монте-Карло // Futures & Options World. № 4. С. 38–43. [Glukhov M. (2009). Monte-Carlo method for option pricing. Futures & Options World, 4, 38–43 (in Russian).]
- Данилишин А. Р. (2023). Приближение Гирсановской меры с логарифмической доходностью в случае тяжелохвостных распределений // Труды ИСА РАН. Т. 73. С. 21–30. [Danilishin A. R. (2023). Approximation of Girsanov’s measure with logarithmic returns in the case of heavy-tailed distributions. Proceedings of the ISA RAS, 73, 21–30 (in Russian).]
- Ермольев Ю. М. (1976). Методы стохастического программирования. М.: Наука. [Ermolyev Yu.M. (1976). Stochastic programming methods. Moscow: Nauka (in Russian).]
- Ширяев А. Н. (2004). Вероятность-2. 3е изд. М.: Изд-во Московского центра непрерывного математического образования (МЦНМО). [Shiryaev A. N. (2004). Probability-2. 3rd ed. Moscow: Publisher «Moscow Center for Continuous Mathematical Education» (MCCME) (in Russian).]
- Äıt-Sahalia Y., Lo A. W. (1998). Nonparametric estimation of state-price densities implicit in financial asset prices. Journal of Finance, 53, 499–547.
- Äit-Sahalia Y., Lo A. W. (2000). Nonparametric risk management and implied risk aversion. Journal of Econometrics, 94, 9–51.
- Bahra B. (1997). Implied risk-neutral probability density functions from option prices: Theory and application. Bank of England, Working Paper, 66. London.
- Bliss R., Panigirtzoglou N. (2004). Recovering risk aversion from options. Journal of Finance, 59, 407–446.
- Brock W. A., Dechert W. D., Scheinkman J. A., LeBaron B. (1996). A test for independence based on the correlation dimension. Econometric Reviews, 15, 197–235.
- Brockwell P. J., Davis R. A. (2002). Introduction to time series and forecasting. 2nd ed. London: Springer.
- Dowd K. (2002). Measuring market risk. Hoboken: John Wiley & Sons Ltd.
- Francq C., Zakoian J.-M. (2010). GARCH models: Structure, statistical inference, and financial applications. Hoboken: John Wiley & Sons Ltd.
- Grachev O. Y. (2017). Application of time series models (ARIMA, GARCH, and ARMA-GARCH) for stock market forecasting. Seattle: Northern Illinois Univ. Honors Capstones, 177. Available at: https://huskiecommons.lib.niu.edu/cgi/viewcontent.cgi?article=1176&context=studentengagement-honorscapstones
- Hull J. C. (2011). Options, futures and other derivative securities. 8 ed. Englewood Cliffs: Prentice Hall.
- Jackwerth J. C. (1996). Recovering risk aversion from option prices and realized return. UC Berkeley Haas School of Business Working Paper.
- Meyer D., Meyer J. (2005). Relative risk aversion: What do we know? Journal of Risk and Uncertainty, 31, 243–262.
