Forecasting the Return and Volatility of Financial Instruments with Fuzzy Inference Systems and ARMA-GARCH Models
- Authors: Sviyazov V.A.1
-
Affiliations:
- Market Risk Department, Sberbank
- Issue: Vol 61, No 3 (2025)
- Pages: 126-138
- Section: Mathematical analysis of economic models
- URL: https://bakhtiniada.ru/0424-7388/article/view/312209
- ID: 312209
Abstract
Keywords
About the authors
V. A. Sviyazov
Market Risk Department, Sberbank
Email: v.sviyazov.96@gmail.com
Moscow, Russia
References
- Пегат А. (2013). Нечеткое моделирование и управление. 2-е изд. М.: БИНОМ. Лаборатория знаний. [Пегат А. (2013). Fuzzy modeling and control. 2nd ed. Moscow: BINOM. Laboratorija znanii (in Russian).]
- Свиязов В. А. (2023). Существует ли эффект выходного дня: исследование российского фондового рынка с помощью нечетких систем // Экономический журнал Высшей школы экономики. Т. 27. № 3. С. 412–434. doi: 10.17323/1813-8691-2023-27-3-412-434 [Sviyazov V. A. (2023). Is there a weekend effect? Russian stock market research based on fuzzy systems. The HSE Economic Journal, 27, 3, 412–434. doi: 10.17323/1813-8691-2023-27-3-412-434 (in Russian).]
- Шведов А. С. (2018). Аппроксимация функций с помощью нейронных сетей и нечетких систем // Проблемы управления. № 1. С. 21–29. ISSN: 1819–3161. [Shvedov A. S. (2018). Functions approximation with neural networks and fuzzy systems. Control Sciences, 1, 21–29. ISSN: 1819–3161 (in Russian).]
- Angelov P. (2010). Evolving Takagi–Sugeno fuzzy systems from streaming data (eTS+). Evolving Intelligent Systems: Methodology and Applications, 21–50. doi: 10.1002/9780470569962.CH2
- Angelov P., Filev D. (2004). An approach to online identification of Takagi–Sugeno fuzzy models. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34, 1, 484–498. doi: 10.1109/TSMCB.2003.817053
- Baczyński M., Jayaram B. (2008). Fuzzy implications. Berlin, Heidelberg: Springer.
- Bollerslev T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 3, 307–327. ISSN: 0304-4076. doi: 10.1016/0304-4076 (86)90063-1
- Diebold F. X., Mariano R. S. (1995). Comparing predictive accuracy. Journal of Business and Economic Statistics, 13, 3, 253–263. ISSN: 15372707. doi: 10.1080/07350015.1995.10524599
- Engle R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50, 4, 987–1007.
- Engle R. F., Ng V. K. (1993). Measuring and testing the impact of news on volatility. The Journal of Finance, 48, 5, 1749–1778. ISSN: 00221082, 15406261.
- Hung J. C. (2009). A fuzzy asymmetric GARCH model applied to stock markets. Information Sciences, 179, 22, 3930– 3943. ISSN: 0020-0255. doi: 10.1016/J.INS.2009.07.009
- Jagannathan R., Glosten L., Runkle D. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. Journal of Finance, 48, 1779–1801. doi: 10.1111/j.1540-6261.1993.tb05128.x
- Kostenetskiy P., Chulkevich R., Kozyrev V. (2021). HPC resources of the Higher School of Economics. Journal of Physics: Conference Series, 1740, 1, 012050. doi: 10.1088/1742-6596/1740/1/012050
- Luna I., Ballini R. (2012). Adaptive fuzzy system to forecast financial time series volatility. Journal of Intelligent and Fuzzy Systems, 23, 27–38. doi: 10.3233/IFS-2012–0491
- Maciel L., Gomide F., Ballini R. (2013). Enhanced evolving participatory learning fuzzy modeling: An application for asset returns volatility forecasting. Evolving Systems, 5, 1–14. doi: 10.1007/s12530-013-9099-0
- Sentana E. (1995). Quadratic ARCH Models. The Review of Economic Studies, 62, 4, 639–661. ISSN: 00346527, 1467937X.
- Sugeno M., Kang G. (1988). Structure identification of fuzzy model. Fuzzy Sets and Systems, 28, 1, 15–33. ISSN: 0165-0114. doi: 10.1016/0165-0114 (88)90113-3
- Takagi T., Sugeno M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, SMC-15, 1, 116–132. doi: 10.1109/TSMC.1985.6313399
- Tan L., Wang S., Wang K. (2017). A new adaptive network-based fuzzy inference system with adaptive adjustment rules for stock market volatility forecasting. Information Processing Letters, 127, 32–36. doi: 10.1016/j.ipl.2017.06.012
- Thavaneswaran A., Liang Y., Zhu Z., Thulasiram Ruppa K. (2020). Novel data-driven fuzzy algorithmic volatility forecasting models with applications to algorithmic trading. 2020 IEEE International Conference on Fuzzy Systems (FUZZ–IEEE), 1–8. doi: 10.1109/FUZZ48607.2020.9177735
- Troiano L., Mejuto E., Kriplani P. (2017). An alternative estimation of market volatility based on fuzzy transform. IFSA-SCIS2017 — Joint 17th World Congress of International Fuzzy Systems Association and 9th International Conference on Soft Computing and Intelligent Systems, 1–6. doi: 10.1109/IFSA-SCIS.2017.8023316
- Tsay R. S. (2010). Analysis of Financial Time Series. 3rd ed. Hoboken (New Jersey): John Wiley & Sons.
- Zadeh L. (1965). Fuzzy sets. Information and Control, 8, 3, 338–353. ISSN: 0019-9958. doi: 10.1016/S0019-9958 (65)90241-X
- Zakoian J.-M. (1994). Threshold heteroskedastic models. Journal of Economic Dynamics and Control, 18, 5, 931–955. ISSN: 0165-1889. doi: 10.1016/0165-1889 (94)90039-6
