GROUP ANALYSES, REDUCTIONS AND EXACT SOLUTIONS OF MONGE–AMPERE EQUATION OF MAGNETIC HYDRODYNAMICS
- 作者: Aksenov A.V1, Polyanin A.D2
-
隶属关系:
- Lomonosov Moscow State University
- Ishlinsky Institute for Problems in Mechanics of RAS
- 期: 卷 60, 编号 6 (2024)
- 页面: 750-763
- 栏目: PARTIAL DERIVATIVE EQUATIONS
- URL: https://bakhtiniada.ru/0374-0641/article/view/265611
- DOI: https://doi.org/10.31857/S0374064124060032
- EDN: https://elibrary.ru/KWLDDX
- ID: 265611
如何引用文章
详细
作者简介
A. Aksenov
Lomonosov Moscow State University
Email: aksenov@mech.math.msu.su
Russia
A. Polyanin
Ishlinsky Institute for Problems in Mechanics of RAS
Email: polyanin@ipmnet.ru
Moscow, Russia
参考
- Smirnov, V.V. “Phonons” in two-dimensional vortex lattices / V.V. Smirnov, K.V. Chukbar // J. Experiment. Theor. Phys. — 2001. — V. 93, № 1. — P. 126–135.
- Zaburdaev, V.Yu. Nonlinear dynamics of electron vortex lattices / V.Yu Zaburdaev, V.V. Smirnov, K.V. Chukbar // Plasma Physics Reports. — 2014. — V. 30, № 3. — P. 214–217.
- Krylov, N.V., Sequences of convex functions, and estimates of the maximum of the solution of a parabolic equation, Siberian Math. J., 1976, vol. 17, no. 2, pp. 226–236.
- Chen, L. Convex-monotone functions and generalized solution of parabolic Monge–Amp`ere equation / L. Chen, G. Wang, S. Lian // J. Differ. Equat. — 2002. — V. 186, № 2. — P. 558–571.
- Xiong, J. On Jorgens, Calabi, and Pogorelov type theorem and isolated singularities of parabolic Monge–Amp`ere equations / J. Xiong, J. Bao // J. Differ. Equat. — 2011. — V. 250, № 1. — P. 367–385.
- Tang, L. Regularity results on the parabolic Monge–Amp`ere equation with VMO type data / L. Tang // J. Differ. Equat. — 2013. — V. 255, № 7. — P. 1646–1656.
- Dai, L. Exterior problems for a parabolic Monge–Amp`ere equation / L. Dai // Nonlin. Anal. Theory, Methods & Appl. — 2014. — V. 100. — P. 99–110.
- Tang, L. Boundary regularity on the parabolic Monge–Amp`ere equation / L. Tang // J. Differ. Equat. — 2015. — V. 259. — P. 6399–6431.
- Pogorelov, A.V., Extrinsic Geometry of Convex Surfaces, Amer. Math. Soc., 1973.
- Polyanin, A.D. Handbook of Nonlinear Partial Differential Equations / A.D. Polyanin, V.F. Zaitsev. — 2nd ed. — Boca Raton : CRC Press, 2012. — 1876 p.
- Khabirov, S.V., Nonisentropic one-dimensional gas motions constructed by means of the contact group of the nonhomogeneous Monge–Amp`ere equation, Math. USSR-Sb., 1992, vol. 71, no. 2, pp. 447–462
- Sulman, M.M. An efficient approach for the numerical solution of the Monge–Amp`ere equation / M.M. Sulman, J.F. Williams, R.D. Russell // Appl. Numer. Math. — 2011. — V. 61, № 3. — P. 298–307.
- Feng, X. Nonstandard local discontinuous Galerkin methods for fully nonlinear second order elliptic and parabolic equations in high dimensions / X. Feng, T. Lewis // J. Scient. Comput. — 2018. — V. 77, № 3. — P. 1534–1565.
- Dubinov, A.E. New exact solutions of the equation of non-linear dynamics of a lattice of electronic vortices in plasma in the framework of electron magnetohydrodynamics / A.E. Dubinov, I.N. Kitayev // Magnetohydrodynamics. — 2020. — V. 56, № 4. — P. 369–375.
- Rakhmelevich, I.V., Non-autonomous evolutionary equation of Monge–Amp`ere type with two space variables, Russ. Math., 2023, vol. 67, no. 2, pp. 52–64.
- Polyanin, A.D. Separation of Variables and Exact Solutions to Nonlinear PDEs / A.D. Polyanin, A.I. Zhurov. — Boca Raton ; London : CRC Press, 2022. — 401 p.
- Ovsiannikov, L.V., Group Analysis of Differential Equations, New York: Academic Press, 1982.
- Kosov, A.A. and Semenov, E.I., Reduction method and new exact solutions of the multidimensional nonlinear heat equation, Differ. Equat., 2022, vol. 58, no. 2, pp. 187–194.
- Kosov, A.A. and Semenov, E.I., Exact solutions of the generalized Richards equation with power-law nonlinearities, Differ. Equat., 2020, vol. 56, no. 9, pp. 1119–1129.
- Aksenov, A.V. and Polyanin, A.D., Review of methods for constructing exact solutions of equations of mathematical physics based on simpler solutions, Theor. Math. Phys., 2022, vol. 211, no. 2, pp. 567–594.
补充文件
