Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 60, № 9 (2024)

Обложка

Весь выпуск

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

СМЕНА УСТОЙЧИВОСТИ ИНВАРИАНТНЫХ МНОГООБРАЗИЙ ДИФФЕРЕНЦИАЛЬНЫХ СИСТЕМ С РАЗНОМАСШТАБНЫМИ ПЕРЕМЕННЫМИ

Кипкаева О.С., Щепакина Е.А.

Аннотация

Рассмотрены инвариантные многообразия со сменой устойчивости дифференциальных систем с разномасштабными переменными, интерес к которым обусловлен их эффективным использованием при описании критических явлений в широком круге различных прикладных задач. Исследованы вопросы существования непрерывных инвариантных многообразий со сменой устойчивости в трёх критических случаях.
Дифференциальные уравнения. 2024;60(9):1155–1166
pages 1155–1166 views

ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ

СУЩЕСТВОВАНИЕ И ЕДИНСТВЕННОСТЬ РЕШЕНИЙ НЕЛИНЕЙНЫХ ФУНКЦИОНАЛЬНО-ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ ИТО

Кадиев Р.И., Поносов А.В.

Аннотация

Рассмотрен новый класс интегральных уравнений Ито, который содержит как многие классические задачи, например задачу Коши для дифференциальных уравнений целого и дробного порядков со стохастическими возмущениями и без них, так и некоторые менее известные и малоизученные виды уравнений, введённые за последнее время. Найдены достаточно общие условия, гарантирующие существование и единственность решений таких уравнений с учётом их особенностей. В статье использовано специальное обобщённое условие Липшица, которое в силу своей гибкости позволяет получать эффективные признаки разрешимости в терминах правых частей уравнений. Рассмотрены многочисленные примеры, охватывающие, в частности, дифференциальные уравнения Ито дробного порядка с последействием и без него, уравнения с дробными винеровскими процессами, уравнения Ито с несколькими шкалами времени, а также их обобщения.
Дифференциальные уравнения. 2024;60(9):1167–1189
pages 1167–1189 views

ОБЪЁМНЫЕ СИНГУЛЯРНЫЕ ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ ДЛЯ ЗАДАЧ НИЗКОЧАСТОТНОГО РАССЕЯНИЯ ЭЛЕКТРОМАГНИТНЫХ ВОЛН В АНИЗОТРОПНЫХ СТРУКТУРАХ

Самохин А.Б., Самохина А.С., Юрченков И.А.

Аннотация

Изучен спектр интегральных операторов объёмных сингулярных интегральных уравнений, описывающих задачи низкочастотного рассеяния электромагнитных волн в ограниченных трёхмерных анизотропных структурах. Представлена в явном виде область расположения спектра оператора на комплексной плоскости для низкочастотного случая. Описан обобщённый метод простой итерации, для применения которого необходимо знание области расположения спектра оператора на комплексной плоскости. Для дискретизации интегральных уравнений применён метод коллокации на равномерной сетке, что позволило, использовав быстрое дискретное преобразование Фурье, построить алгоритм быстрого умножения матрицы системы линейных уравнений на вектор. Приведены результаты численного решения рассматриваемых задач.
Дифференциальные уравнения. 2024;60(9):1190–1204
pages 1190–1204 views

ИНТЕГРАЛЬНЫЕ И ИНТЕГРО-ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

О СУЩЕСТВОВАНИИ РАВНОВЕСИЯ В МОДЕЛИ ДИКМАНА–ЛОУ В СЛУЧАЕ КУСОЧНО-КОНСТАНТНЫХ ЯДЕР

Николаев М.В., Никитин А.А.

Аннотация

Для модели логистической динамики, разработанной У. Дикманом и Р. Лоу, проведён анализ нелинейного интегрального уравнения, описывающего состояние равновесия одновидового сообщества при трёхпараметрическом замыкании третьего пространственного момента в случае, когда ядра разброса и конкуренции представляют собой кусочнопостоянные функции. Установлены достаточные условия разрешимости этого уравнения.
Дифференциальные уравнения. 2024;60(9):1205–1215
pages 1205–1215 views

ИНТЕГРО-ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ В ЗАДАЧЕ РАССЕЯНИЯ ЭЛЕКТРОМАГНИТНЫХ ВОЛН НА ДИЭЛЕКТРИЧЕСКОМ ТЕЛЕ, ПОКРЫТОМ ГРАФЕНОМ

Смирнов Ю.Г., Кондырев О.В.

Аннотация

Рассмотрена задача о резонансных частотах диэлектрических тел, покрытых графеном, без учёта его нелинейности. Краевая задача сведена к системе интегро-дифференциальных уравнений по поверхности графена. Доказано свойство фредгольмовости этой системы при выполнении достаточных условий. Установлена дискретность спектра оператор-функции, отвечающей системе интегро-дифференциальных уравнений, в области комплексной плоскости спектрального параметра (круговой частоты).
Дифференциальные уравнения. 2024;60(9):1216–1224
pages 1216–1224 views

ЧИСЛЕННЫЕ МЕТОДЫ

ПОСТРОЕНИЕ ПЕРЕДАТОЧНОЙ ФУНКЦИИ ОПЕРАТОРА ПУАНКАРЕ–СТЕКЛОВА ДЛЯ УПРУГОЙ ПОЛУПЛОСКОСТИ С ПОКРЫТИЕМ

Бобылев А.А.

Аннотация

Рассматривается оператор Пуанкаре–Стеклова для однородной изотропной упругой полуплоскости со стратифицированным упругим покрытием, отображающий на части границы покрытия нормальные напряжения в нормальные перемещения. Для построения передаточной функции этого оператора используется вариационная формулировка краевой задачи для трансформант перемещений. Даётся определение и доказываются существование и единственность обобщённого решения вариационной задачи. Аппроксимация этой задачи проводится методом конечных элементов. Для численного решения полученной системы линейных алгебраических уравнений используется предобусловленный метод сопряжённых градиентов. Проводится верификация разработанного вычислительного алгоритма.
Дифференциальные уравнения. 2024;60(9):1225–1240
pages 1225–1240 views

ИСПОЛЬЗОВАНИЕ ВЕЙВЛЕТОВ ХААРА ДЛЯ РЕШЕНИЯ ОДНОМЕРНОГО ГИПЕРСИНГУЛЯРНОГО ИНТЕГРАЛЬНОГО УРАВНЕНИЯ

Когтенев Д.А., Замарашкин Н.Л.

Аннотация

Разработан численный метод решения одномерного гиперсингулярного интегрального уравнения, использующий аппроксимации матриц разреженными матрицами. Этот метод имеет тот же порядок сходимости, что и известные методы решения гиперсингулярных интегральных уравнений, но является более эффективным как по числу арифметических операций, так и по объёму памяти.

Дифференциальные уравнения. 2024;60(9):1241–1260
pages 1241–1260 views

ДВУХТОЧЕЧНЫЙ МЕТОД КОЛЛОКАЦИИ ЧИСЛЕННОГО РЕШЕНИЯ ОДНОМЕРНЫХ ГИПЕРСИНГУЛЯРНЫХ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ НА НЕРАВНОМЕРНЫХ РАЗБИЕНИЯХ

Ненашев А.С.

Аннотация

Построена квадратурная формула для вычисления гиперсингулярного интеграла по отрезку с использованием концов интервалов разбиения отрезка в качестве узлов кусочнопостоянной интерполяции плотности интеграла, а также особым образом выбранных точек коллокации. Отличительной особенностью предложенной формулы является возможность вычисления значений интеграла от функций, имеющих конечное число точек разрыва первого рода на отрезке интегрирования. На основе полученной квадратурной формулы построена численная схема решения соответствующего характеристического гиперсингулярного интегрального уравнения при нерегулярном разбиении области поиска решения. Доказаны оценки скорости сходимости приближённых решений к точным в классе кусочно-гёльдеровских функций.
Дифференциальные уравнения. 2024;60(9):1261–1275
pages 1261–1275 views

СХОДИМОСТЬ МЕТОДА КУСОЧНО-ЛИНЕЙНЫХ АППРОКСИМАЦИЙ И КОЛЛОКАЦИЙ ДЛЯ ДВУМЕРНОГО ГИПЕРСИНГУЛЯРНОГО ИНТЕГРАЛЬНОГО УРАВНЕНИЯ НА МНОЖЕСТВЕ С ГРАНИЦЕЙ

Сетуха А.В.

Аннотация

Рассмотрено гиперсингулярное интегральное уравнение на выпуклом ограниченном множестве на плоскости с интегралом, понимаемым в смысле конечной части по Адамару. Уравнения такого типа, в частности, возникают при решении краевой задачи Неймана для уравнений Лапласа и Гельмгольца на плоском экране в случае, когда решение ищется в виде потенциала двойного слоя. Для численного решения уравнения применена численная схема, основанная на кусочно-линейной аппроксимации неизвестной функции по треугольной конформной сетке и методе коллокаций. Доказана равномерная сходимость численных решений к точному на сетке при стремлении максимального диаметра ячеек к нулю.
Дифференциальные уравнения. 2024;60(9):1276–1296
pages 1276–1296 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».