ОБ ОДНОЗНАЧНОЙ РАЗРЕШИМОСТИ ЗАДАЧИ КОШИ В КЛАССЕ 𝐶1,0(𝐷) ДЛЯ ПАРАБОЛИЧЕСКИХ СИСТЕМ НА ПЛОСКОСТИ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Установлена однозначная разрешимость задачи Коши в полосе для параболической по И.Г. Петровскому системы уравнений второго порядка с коэффициентами, удовлетворяющими двойному условию Дини, в пространстве непрерывных и ограниченных вместе с производной первого порядка по пространственной переменной в замыкании полосы функций. Найдено интегральное представление решения задачи, получены соответствующие оценки этого решения.

Об авторах

Е. А Бадерко

Московский государственный университет имени М.В. Ломоносова; Московский центр фундаментальной и прикладной математики

Email: baderko.ea@yandex.ru

С. И Сахаров

Московский государственный университет имени М.В. Ломоносова; Московский центр фундаментальной и прикладной математики

Email: ser341516@yandex.ru

Список литературы

  1. Солонников, В.А. О краевых задачах для линейных параболических систем дифференциальных уравнений общего вида / В.А. Солонников // Тр. Мат. ин-та им. В.А. Стеклова. — 1965. — Т. 83. — С. 3-163.
  2. Ладыженская, О.А. Линейные и квазилинейные уравнения параболического типа / О.А. Ладыженская, В.А. Солонников, Н.Н. Уральцева. — М. : Наука, 1967. — 736 c.
  3. Черепова, М.Ф. О гладкости решения задачи Коши для параболической системы / М.Ф. Черепова // Вестник МЭИ. — 2009. — № 6. — С. 38-44.
  4. Arnese, G. Su alcune proprieta dell’integrale di Poisson relativo ad una equazione parabolica di ordine 2 a coefficienti non costanti / G. Arnese // Ann. di Mat. Pura ed Appl. — 1971. — V. 91, № 1. — P. 1-16.
  5. Камынин, Л.И. О решении методом потенциалов основных краевых задач для одномерного параболического уравнения 2-го порядка / Л.И. Камынин // Сиб. мат. журн. — 1974. — Т. 15, № 4. — С. 806-834.
  6. Cherepova, M.F. The Cauchy problem for a multi-dimensional parabolic equation with Dini-continuous coefficients / M.F. Cherepova, I.V. Zhenyakova // J. Math. Sci. — 2022. — V. 264, № 5. — P. 581-602.
  7. Коненков, А.Н. Задача Коши для уравнения теплопроводности в пространствах Зигмунда / А.Н. Коненков // Дифференц. уравнения. — 2005. — Т. 41, № 6. — С. 820-831.
  8. Коненков, А.Н. Задача Коши для параболических уравнений в пространствах Зигмунда / А.Н. Коненков // Дифференц. уравнения. — 2006. — Т. 42, № 6. — С. 814-819.
  9. Тверитинов, В.А. О второй краевой задаче для параболической системы с одной пространственной переменной / В.А. Тверитинов // Дифференц. уравнения. — 1989. — Т. 25, № 12. — С. 2178-2179.
  10. Тверитинов, В.А. Решение второй краевой задачи для параболической системы с одной пространственной переменной методом граничных интегральных уравнений / В.А. Тверитинов. — Москва, 1989. — Деп. ВИНИТИ РАН № 6906-В89.
  11. Cherepova, M.F. The Cauchy problem for a parabolic system with nonuniform Holder coefficients / M.F. Cherepova // J. Math. Sci. — 2013. — V. 191, № 2. — P. 296-313.
  12. Baderko, E.A. Uniqueness theorem for parabolic Cauchy problem / E.A. Baderko, M.F. Cherepova // Appl. Anal. — 2016. — V. 95, № 7. — P. 1570-1580.
  13. Бадерко, E.A. Единственность решения задачи Коши для параболических систем / Е.А. Бадерко, М.Ф. Черепова // Докл. РАН. — 2016. — Т. 468, № 6. — С. 607-608.
  14. Бадерко, E.A. О единственности решения задачи Коши для параболических систем / Е.А. Ба-дерко, М.Ф. Черепова // Дифференц. уравнения. — 2019. — Т. 55, № 6. — С. 822-830.
  15. Бадерко, Е.А. О гладкости потенциала Пуассона для параболических систем второго порядка на плоскости / Е.А. Бадерко, К.Д. Федоров // Дифференц. уравнения. — 2023. — Т. 59, № 12. — С. 1606-1618.
  16. Дзядык, В.К. Введение в теорию равномерного приближения функций полиномами / В.К. Дзя-дык. — М. : Наука, 1977. — 512 c.
  17. Петровский, И.Г. О проблеме Коши для систем линейных уравнений с частными производными в области неаналитических функций / И.Г. Петровский // Бюлл. МГУ. Секц. А. — 1938. — Т. 1, № 7. — C. 1-72.
  18. Фридман, А. Уравнения с частными производными параболического типа / А. Фридман. — М. : Мир, 1968. — 428 c.
  19. Зейнеддин, М. О потенциале простого слоя для параболической системы в классах Дини: дис....канд. физ.-мат. наук / М. Зейнеддин. — М., 1992. — 89 с.
  20. Зейнеддин, М. Гладкость потенциала простого слоя для параболической системы второго порядка в классах Дини / М. Зейнеддин. — 1992. — Деп. ВИНИТИ РАН № 1294-В92.
  21. Кружков, С.Н. Об оценках старших производных для решений эллиптических и параболических уравнений с непрерывными коэффициентами / С.Н. Кружков // Мат. заметки. — 1967. — Т. 2, № 5. — С. 549-560.
  22. Владимиров, В.С. Обобщенные функции в математической физике / В.С. Владимиров. — М. : Наука, 1979. — 320 c.
  23. Эйдельман, С.Д. Параболические системы / С.Д. Эйдельман. — М. : Наука, 1964. — 444 c.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».