Algoritm podvizhnogo okna dlya parametricheskoy identifikatsii dinamicheskikh sistem s pryamougol'nymi i ellipsoidnymi oblastyami neopredelennosti parametrov

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The parametric identification problem for dynamical systems with rectangular and ellipsoid parameter uncertainty domains is solved for the case in which the experimental data are given in the form of intervals. The state of the considered dynamical systems at each moment of time is a parametric set. An objective function that characterizes the degree of deviation of the parametric sets of states from experimental interval estimates is constructed in the space of parameter uncertainty domains. To minimize the objective function, a sliding window algorithm has been developed, which is related to gradient methods. It is based on an adaptive interpolation algorithm that allows one to explicitly obtain parametric sets of states of a dynamical system within a given parameter uncertainty domain (window). The efficiency and performance of the proposed algorithm are demonstrated.

作者简介

A. Morozov

Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences; Moscow Aviation Institute

Email: morozov@infway.ru
Moscow, 119333, Russia; Moscow, 125993, Russia

D. Reviznikov

Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences; Moscow Aviation Institute

编辑信件的主要联系方式.
Email: reviznikov@mai.ru
Moscow, 119333, Russia; Moscow, 125993, Russia

参考

  1. Шенк Х. Теория инженерного эксперимента. М., 1972.
  2. Martyshov M.N., Emelyanov A.V., Demin V.A. et al. Multifilamentary character of anticorrelated capacitive and resistive switching in memristive structures based on (Co-Fe-B)x(LiNbO3)100-x nanocomposite // Phys. Rev. Appl. 2020. V. 14. № 3. P. 034016.
  3. Moore R. Interval Analysis. Englewood Cliffs, 1966.
  4. Moore R.E., Kearfott R.B., Cloud M.J. Introduction to Interval Analysis. Philadelphia, 2009.
  5. Шарый С.П. Конечномерный интервальный анализ. Новосибирск, 2019.
  6. Добронец Б.С. Интервальная математика. Красноярск, 2007.
  7. Xiao N., Fedele F., Muhanna R.L. Inverse problems under uncertainties-an interval solution for the beam finite element // 11th Intern. Conf. on Structural Safety & Reliability. New York, 2013. P 1-8.
  8. Петрикевич Я.И. Структурно-параметрическая идентификация динамических объектов по интервальным исходным данным: дис.... канд. техн. наук. М., 2006.
  9. Дилигенская А.Н., Самокиш А.В. Параметрическая идентификация в обратных задачах теплопроводности в условиях интервальной неопределённости на основе нейронных сетей // Вестн. Самарского гос. техн. ун-та. 2020. Т. 28. № 4 (68). С. 6-18.
  10. Морозов А.Ю., Ревизников Д.Л. Интервальный подход к решению задач параметрической идентификации динамических систем // Дифференц. уравнения. 2022. Т. 58. № 7. С. 962-976.
  11. Морозов А.Ю., Ревизников Д.Л. Алгоритм адаптивной интерполяции на основе kd-дерева для численного интегрирования систем обыкновенных дифференциальных уравнений с интервальными начальными условиями // Дифференц. уравнения. 2018. Т. 54. № 7. С. 963-974.
  12. Морозов А.Ю., Ревизников Д.Л., Гидаспов В.Ю. Алгоритм адаптивной интерполяции на основе kd-дерева для решения задач химической кинетики с интервальными параметрами // Мат. моделирование. 2018. Т. 30. № 12. С. 129-144.
  13. Морозов А.Ю. Интерполяционный подход в задачах моделирования динамических систем с эллипсоидными оценками параметров // Тр. МАИ. 2022. № 124. С. 1-24.
  14. Смоляк С.А. Квадратурные и интерполяционные формулы на тензорных произведениях некоторых классов функций // Докл. АН СССР. 1963. Т. 148. № 5. С. 1042-1045.
  15. Bungatrz H-J., Griebel M. Sparse grids // Acta Numerica. 2004. V. 13. № 1. P. 147-269.
  16. Gerstner T., Griebel M. Sparse grids // Encyclopedia of Quantitative Finance / Ed. R. Cont. New York, 2010.
  17. Morozov A.Yu., Zhuravlev A.A., Reviznikov D.L. Sparse grid adaptive interpolation in problems of modeling dynamic systems with interval parameters // Mathematics. 2021. V. 9. P. 298.
  18. Морозов А.Ю., Ревизников Д.Л. Алгоритм адаптивной интерполяции на разреженных сетках для численного интегрирования систем обыкновенных дифференциальных уравнений с интервальными неопределённостями // Дифференц. уравнения. 2021. Т. 57. № 7. С. 976-987.
  19. Морозов А.Ю. Параллельный алгоритм адаптивной интерполяции на основе разреженных сеток для моделирования динамических систем с интервальными параметрами // Программная инженерия. 2021. Т. 12. № 8. С. 395-403.
  20. Демьянов В.Ф., Малоземов В.Н. Введение в минимакс. М., 1972.
  21. Евтушенко Ю.Г. Некоторые локальные свойства минимаксных задач // Журн. вычислит. математики и мат. физики. 1974. Т. 14. № 3. С. 669-679.
  22. Гилл Ф., Мюррей У., Райт М. Практическая оптимизация. М., 1985.
  23. Пантелеев А.В., Летова Т.А. Методы оптимизации в примерах и задачах. М., 2005.
  24. Sylvester J. J. A question in the geometry of situation // Quarterly J. of Math. 1857. V. 1. P. 79.
  25. Васильев Н.С. О численном решении экстремальных задач построения эллипсоидов и параллелепипедов // Журн. вычислит. математики и мат. физики. 1987. Т. 27. № 3. С. 340-348.
  26. Шор Н.З., Стеценко С.И. Алгоритм последовательного сжатия пространства для построения описанного эллипсоида минимального объёма // Исследование методов решения экстремальных задач. Киев, 1990. С. 25-29.
  27. Khachiyan L.G. Rounding of polytopes in the real number model of computation // Math. of Operations Research. 1996. V. 21. № 2. P. 307-320.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».