Human papillomavirus: genetic diversity, vaginal microbiota, and local immunity in cervical intraepithelial neoplasia

Cover Image

Cite item

Abstract

Objective. To assess the contribution of HPV and to examine the state of vaginal microecology in women with HPV-induced cervical intraepithelial neoplasia (using the Gomel region as an example).

Materials and methods. The study was carried out in the period from 2018 to 2023 and included 11,382 women from the Gomel region. A study of cervical canal scrapings was performed using the cytological method. The molecular genetic testing of these samples for the presence of DNA of the human papillomavirus (HPV) of high carcinogenic risk (hr) was carried out using the Abbott Real Time hrHPV reagent kit (USA). The genotyping of positive samples was performed using the AmpliSens hrHPV genotype-FL kit (RF). A microbiological study of vaginal discharge from HPV-negative women (n = 78) was conducted with an assessment of the state of the vaginal microbiocenosis and an assessment of the functions of lactobacilli. An immunological study of cervicovaginal secretion included the determination of interleukins: IL-1β, IL-2, IL-6, IL-8, IL-10, tumor necrosis factor-alpha and secretory immunoglobulin A.

Results. The prevalence of hrHPV in women in the Gomel region was 9.0%. hrHPV was detected with the highest frequency in the 18–24 age group — 19% (95% CI 17–21.1). It was found that during the study period, 16, 18, 51, 56 and 31 were found with the highest frequency. Genotype 16 (73.8%) was detected significantly more often in high-grade squamous intraepithelial lesions, genotypes 45 (14.9%) and 58 (11.9%) in low-grade squamous intraepithelial lesions, and genotype 33 (14.8%) in atypical squamous cells of undetermined significance. Dysbiosis was detected significantly more often with HPV-negative cervical dysplasia (87.2%), and severe dysbiosis in this group was noted with a high frequency — 66.7%. The antagonistic activity of lactobacilli in the group with cervical dysplasia was 2 times lower in relation to all test strains compared to the group with normocytogram. In the group with dysplasia, the ability of lactobacilli to produce hydrogen peroxide was absent in 92.3% of cases and the ability to form biofilm was significantly reduced. According to the results of the analysis, the following may be considered unfavorable factors in HPV-negative dysplasia: vaginal dysbiosis, increased pH of vaginal discharge, increased IL-6, decreased levels of secretory immunoglobulin A.

Conclusion. Thus, both HPV and factors characterizing the vaginal microecology contribute to the development of cervical dysplasia. The presented results are not only of practical but also of fundamental importance, as they expand our understanding of the mechanisms of cervical cancer development by studying the role of the vaginal microecology. The identified biomarkers related to the microbiota and local immunity at various HPV infection statuses may help develop new approaches to the diagnosis and prevention of cervical dysplasia and cervical cancer.

About the authors

Volha P. Lohinava

Republican Scientific and Practical Center for Radiation Medicine and Human Ecology

Author for correspondence.
Email: loginovaolga81@mail.ru
ORCID iD: 0000-0001-7189-3799

doctor of clinical laboratory diagnostics, Laboratory of cellular technologies

Belarus, Gomel

Natalia I. Shevchenko

Republican Scientific and Practical Center for Radiation Medicine and Human Ecology

Email: shevchenkoni@bk.ru
ORCID iD: 0000-0003-0579-6215

Cand. Sci. (Biol.), Associate Professor, Head, Laboratory of Cellular Technologies

Belarus, Gomel

Elena L. Gasich

Republican Center for Hygiene, Epidemiology, and Public Health

Email: elena.gasich@gmail.com
ORCID iD: 0000-0002-3662-3045

Dr. Sci. (Biol.), Associate Professor, Head, Laboratory for the diagnostics of HIV and concomitant infections, Research Institute of Hypertension and Computer Science

Belarus, Minsk

References

  1. Yadav G., Srinivasan G., Jain A. Cervical cancer: Novel treatment strategies offer renewed optimism. Pathol. Res. Pract. 2024;254:155136. DOI: https://doi.org/10.1016/j.prp.2024.155136
  2. Santella B., Schettino M.T., Franci G., et al. Microbiota and HPV: The role of viral infection on vaginal microbiota. J. Med. Virol. 2022;94(9):4478–84. DOI: https://doi.org/10.1002/jmv.27837
  3. Osmani V., Rossiter M., Hörner L., et al. Worldwide burden of cervical human papillomavirus (HPV) in women over 50 years with abnormal cytology: a systematic review and meta-analysis. BMJ Glob. Health. 2025;10(4):e017309. DOI: https://doi.org/10.1136/bmjgh-2024-017309
  4. Richart R.M., Ralph M.D. Natural history of cervical intraepithelial neoplasia. Clin. Obstet. Gynecol. 1967;10(4):748–84. DOI: https://doi.org/10.1097/00003081-196712000-00002
  5. Nayar R., Wilbur D.C. The Pap test and Bethesda 2014. Cancer Cytopathol. 2015;123(5):271–81. DOI: https://doi.org/10.1002/cncy.21521
  6. Njue J.K., Muturi M., Kamau L., Lwembe R. Primary and triage cervical screening diagnostic value of methods for the detection of cervical dysplasia. Biomed. Res. Int. 2022;2022:1930102. DOI: https://doi.org/10.1155/2022/1930102
  7. Lee J.E., Chung Y., Rhee S., Kim T.H. Untold story of human cervical cancers: HPV-negative cervical cancer. BMB Rep. 2022;55(9):429–38. DOI: https://doi.org/10.5483/BMBRep.2022.55.9.042
  8. Shao N. Research progress on human papillomavirus-negative cervical cancer: A review. Medicine. 2024;103(41):e39957(1-8). DOI: https://doi.org/10.1097/MD.0000000000039957
  9. Neugent M.L., Hulyalkar N.V., Nguyen V.H., et al. Advances in understanding the human urinary microbiome and its potential role in urinary tract infection. mBio. 2020;11(2):e00218–20. DOI: https://doi.org/10.1128/mBio.00218-20
  10. Cheng L., Yan C., Yang Y., et al. Exploring the clinical signatures of cervical dysplasia patients and their association with vaginal microbiota. Cancer Med. 2024;13(23):e70440. DOI: https://doi.org/10.1002/cam4.70440
  11. Barrientos-Durán A., Fuentes-López A., de Salazar A., et al. Reviewing the composition of vaginal microbiota: inclusion of nutrition and probiotic factors in the maintenance of eubiosis. Nutrients. 2020;12(2):419. DOI: https://doi.org/10.3390/nu12020419
  12. Грузевский А.А. Колонизационная резистентность при вагинальном дисбиозе: состояние гуморального и клеточного звеньев. Вісник морської медицини. 2017;(4):103–7. Gruzevskii A.A. Colonization resistance in vaginal dysbiosis: state of humoral and cellular components of immune system. Textbook of Marine Medicine. 2017;(4):103–7.
  13. Muzny C.A., Blanchard E., Taylor C.M., et al. Identification of key bacteria involved in the induction of incident bacterial vaginosis: a prospective study. J. Infect. Dis. 2018;218(6):966–78. DOI: https://doi.org/10.1093/infdis/jiy243
  14. Nunn K.L., Forney L.J. Unraveling the dynamics of the human vaginal microbiome. Yale J. Biol. Med. 2016;89(3):331–7.
  15. Molijn A., Jenkins D., Chen W., et al. The complex relationship between human papillomavirus and cervical adenocarcinoma. Int. J. Cancer. 2016;138(2):409–16. DOI: https://doi.org/10.1002/ijc.29722
  16. Zheng J.J., Miao J.R., Wu Q., et al. Correlation between HPV-negative cervical lesions and cervical microenvironment. Taiwan J. Obstet. Gynecol. 2020;59(6):855–61. DOI: https://doi.org/10.1016/j.tjog.2020.08.002
  17. Regauer S., Reich O., Kashofer K. HPV-negative squamous cell carcinomas of the cervix with special focus on intraepithelial precursor lesions. Am. J. Surg. Pathol. 2022;46(2):147–58. DOI: https://doi.org/10.1097/PAS.0000000000001778
  18. Иркитова А.Н., Каган Я.Р., Соколова Г.Г. Сравнительный анализ методов определения антагонистической активности молочнокислых бактерий. Известия Алтайского государственного университета. 2012;3(1):41–4. Irkitova A.N., Kagan Ja.R., Sokolova G.G. Comparative analysis of the methods to define antagonistic activity of lactic bacteria. The News of Altai State University. 2012;3(1):41–4. EDN: https://elibrary.ru/pbfqgv
  19. Ярец Ю.И., Шевченко Н.И., Новикова И.А. Способ оценки способности бактерий формировать биопленку. Патент BY 20326 МПК С12Q1/02; 2013. Yarets Yu.I., Shevchenko N.I., Novikova I.A. A method for evaluating the ability of bacteria to form biofilms. Patent BY 20326 IPC C12Q1/02; 2013.
  20. Lee J.E., Chung Y., Rhee S., et al. Untold story of human cervical cancers: HPV-negative cervical cancer. BMB Rep. 2022;55(9):429–38. DOI: https://doi.org/10.5483/BMBRep.2022.55.9.042
  21. Nicolás I., Marimont L., Barnadas E., et al. HPV-negative tumors of the uterine cervix. Mod. Pathol. 2019;32(8):1189–96. DOI: https://doi.org/10.1038/s41379-019-0249-1
  22. Yamaguchi M., Sekine M., Hanley S.J.B., et al. Risk factors for HPV infection and high-grade cervical disease in sexually active Japanese women. Sci. Rep. 2021;11(1):2898. DOI: https://doi.org/10.1038/s41598-021-82354-6
  23. Mishra J., Kalantri S., Raphael V., et al. Prevalence of human papillomavirus infection in abnormal pap smears. Cytojournal. 2023;20:21. https://doi.org/10.25259/Cytojournal_8_2021
  24. Correa R.M., Baena A., Valls J., et al. ESTAMPA Study Group. Distribution of human papillomavirus genotypes by severity of cervical lesions in HPV screened positive women from the ESTAMPA study in Latin America. PLoS One. 2022;17(7):e0272205. DOI: https://doi.org/10.1371/journal.pone.0272205
  25. Tang X., Zhang H., Wang T., et al. Single and multiple high-risk human papillomavirus infections in histopathologically confirmed cervical squamous lesions: incidences, distribution, and associated detection rates for precancerous and cancerous lesions. Lab. Invest. 2023;103(11):100234. DOI: https://doi.org/10.1016/j.labinv.2023.100234
  26. Chee W.J.Y., Chew S.Y., Than L.T.L. Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health. Microb. Cell Fact. 2020;19(1):203. DOI: https://doi.org/10.1186/s12934-020-01464-4
  27. Ma Y., Li Y., Liu Y., et al. Vaginal microbiome dysbiosis is associated with the different cervical disease status. J. Microbiol. 2023;61(4):423–32. DOI: https://doi.org/10.1007/s12275-023-00039-3
  28. Łaniewski P., Ilhan Z.E., Herbst-Kralovetz M.M. The microbiome and gynaecological cancer development, prevention and therapy. Nat. Rev. Urol. 2020;17(4):232–50. DOI: https://doi.org/10.1038/s41585-020-0286-z
  29. Созонова Е.А., Чапова Н.Е., Буданова Е.В. Динамические изменения микробиоты влагалища женщины. Вопросы гинекологии, акушерства и перинатологии. 2021;20(4):106–14. Sozonova E.A., Chapova N.E., Budanova E.V. Dynamic changes in the women’s vaginal microbiota. Gynecology, Obstetrics and Perinatology. 2021;20(4):106–14 DOI: https://doi.org/10.20953/1726-1678-2021-4-106-114 EDN: https://elibrary.ru/evgdck

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Lohinava V.P., Shevchenko N.I., Gasich E.L.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).