The adoptive transfer of regulatory B lymphocytes prevents severe damage to lung tissues during respiratory infection with the influenza A/H1N1 virus
- Authors: Dyakov I.N.1, Chernyshova I.N.1, Gavrilova M.V.1, Bushkova K.K.1, Rtishchev A.A.1, Abayeva N.E.1, Markushin S.G.1, Khochenkov D.A.2, Bulgakova I.D.1,3, Snegireva N.A.1, Svitich O.A.1
-
Affiliations:
- I.I. Mechnikov Research Institute of Vaccines and Sera
- N.N. Blokhin National Medical Research Center
- Sechenov University
- Issue: Vol 102, No 6 (2025)
- Pages: 737-749
- Section: ORIGINAL RESEARCHES
- URL: https://bakhtiniada.ru/0372-9311/article/view/381678
- DOI: https://doi.org/10.36233/0372-9311-784
- EDN: https://elibrary.ru/GCDMOD
- ID: 381678
Cite item
Abstract
The aim of the study is to investigate the role of regulatory B lymphocytes in the regulation of the inflammatory process in the lungs against the background of influenza virus infection (A/H1N1/WSN/1933).
Materials and methods. On the day after intranasal infection with influenza A/H1N1/WSN/1933 virus, CBA/N mice received intravenous B cells from CBA mice: Breg (induced in vitro by activators, high content of IL-10+ regulatory B cells), Bcontr (incubated in vitro without activators, IL-10 content+ minimal regulatory B cells), BPerC (isolated abdominal B cells, without in vitro incubation). On the 4th day after infection, histological changes in the lungs, the number of IgM and IgG antibody producers in the lungs and spleen, as well as the viral load in the lungs were evaluated.
Results. Intranasal infection of CBA/N mice with influenza A/H1N1/WSN/1933 virus was accompanied by pronounced morphological changes in lung tissue detected on day 4, including tissue structural disorders and cellular infiltration. The adoptive transfer of Breg the day after infection was associated with a decrease in the severity of histological signs of lung damage compared with the group without transfer. The transfer of Bcontr and BPerC was also accompanied by a decrease in the detected tissue damage, but the effect was less pronounced than with Breg transfer. In all groups with CBA B cell transfer, there was an increase in the number of IgM and IgG antibody producers in the spleen and lungs. At the same time, there were no differences in the indicator of viral load in the lungs between the compared groups.
Conclusion. The revealed prevention of severe lung tissue damage in CBA/N mice infected with influenza A/H1N1/WSN/1933 virus during the adoptive transfer of in vitro-induced regulatory B cells from CBA mice is attributable to a combination of increased immune response due to the transferred cells and the regulatory activity of IL-10+ regulatory B cells.
Keywords
About the authors
Ilya N. Dyakov
I.I. Mechnikov Research Institute of Vaccines and Sera
Author for correspondence.
Email: dyakov.instmech@mail.ru
ORCID iD: 0000-0001-5384-9866
Cand. Sci. (Biol.), leading researcher, Head, Laboratory of biosynthesis of immunoglobulins, Immunology and allergology department, I. Mechnikov Research Institute of Vaccines and Sera; researcher, Laboratory of bacterial genetics, Department of medical microbiology, National Research Center for Epidemiology and Microbiology named after N.F. Gamaleya
Russian Federation, MoscowIrina N. Chernyshova
I.I. Mechnikov Research Institute of Vaccines and Sera
Email: irina.n.chernyshova@gmail.com
ORCID iD: 0000-0001-5053-2433
Cand. Sci. (Med.), senior researcher, Laboratory of biosynthesis of immunoglobulins, Immunology and allergology department
Russian Federation, MoscowMarina V. Gavrilova
I.I. Mechnikov Research Institute of Vaccines and Sera
Email: gavrilovamv@gmail.com
ORCID iD: 0000-0002-6936-2486
Cand. Sci. (Biol.), researcher, Laboratory of biosynthesis of immunoglobulins, Immunology and allergology department, I. Mechnikov Research Institute of Vaccines and Sera; researcher, Laboratory of bacterial genetics, Department of medical microbiology, National Research Center for Epidemiology and Microbiology named after N.F. Gamaleya
Russian Federation, MoscowKristina K. Bushkova
I.I. Mechnikov Research Institute of Vaccines and Sera
Email: christina_bushkova@mail.ru
ORCID iD: 0000-0002-4757-0751
researcher, Laboratory of biosynthesis of immunoglobulins, Immunology and allergology department
Russian Federation, MoscowArtyom A. Rtishchev
I.I. Mechnikov Research Institute of Vaccines and Sera
Email: rtishchevartyom@gmail.com
ORCID iD: 0000-0002-4212-5093
researcher, Laboratory of genetics of RNA-containing viruses, Department of virology named after O.G. Andzhaparidze
Russian Federation, MoscowNatalia E. Abayeva
I.I. Mechnikov Research Institute of Vaccines and Sera
Email: fabaeva.nata@list.ru
ORCID iD: 0000-0003-3984-959X
researcher, Laboratory of biosynthesis of immunoglobulins, Immunology and allergology department
Russian Federation, MoscowStanislav G. Markushin
I.I. Mechnikov Research Institute of Vaccines and Sera
Email: s.g.markushin@rambler.ru
ORCID iD: 0000-0003-0994-5337
Dr. Sci. (Med.), Head, Laboratory of genetics of RNA-containing viruses, Department of virology named after O.G. Andzhaparidze
Russian Federation, MoscowDmitry A. Khochenkov
N.N. Blokhin National Medical Research Center
Email: khochenkov@gmail.com
ORCID iD: 0000-0002-5694-3492
Cand. Sci. (Biol.), Head, Laboratory of biomarkers and mechanisms of tumor angiogenesis
Russian Federation, MoscowIrina D. Bulgakova
I.I. Mechnikov Research Institute of Vaccines and Sera; Sechenov University
Email: bulgakova_i_d@staff.sechenov.ru
ORCID iD: 0000-0002-2629-9616
assistant, Microbiology, virology and immunology department named after Academician A.A. Vorobyev, Institute of Public Health named after F.F. Erisman, Sechenov University; junior researcher, Laboratory of molecular immunology, I. Mechnikov Research Institute of Vaccines and Sera
Russian Federation, Moscow; MoscowNadezhda A. Snegireva
I.I. Mechnikov Research Institute of Vaccines and Sera
Email: snegireva.nadezda@gmail.com
ORCID iD: 0000-0002-5399-3224
researcher, Laboratory of biosynthesis of immunoglobulins, Immunology and allergology department
Russian Federation, MoscowOxana A. Svitich
I.I. Mechnikov Research Institute of Vaccines and Sera
Email: svitichoa@yandex.ru
ORCID iD: 0000-0003-1757-8389
Dr. Sci. (Med.), Professor, Full Member of the Russian Academy of Sciences, Director
Russian Federation, MoscowReferences
- McCarthy M.K., Procario M.C., Twisselmann N., et al. Proinflammatory effects of interferon gamma in mouse adenovirus 1 myocarditis. J. Virol. 2015;89(1):468–79. DOI: https://doi.org/10.1128/JVI.02077-14
- Tao W., Zhang G., Liu C., et al. Low-dose LPS alleviates early brain injury after SAH by modulating microglial M1/M2 polarization via USP19/FOXO1/IL-10/IL-10R1 signaling. Redox Biol. 2023;66:102863. DOI: https://doi.org/10.1016/j.redox.2023.102863
- Niederman M.S., Torres A. Respiratory infections. Eur. Respir. Rev. 2022;31(166):220150. DOI: https://doi.org/10.1183/16000617.0150-2022
- GBD 2016 Lower Respiratory Infections Collaborators. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect. Dis. 2018;18(11):1191–210. DOI: https://doi.org/10.1016/S1473-3099(18)30310-4
- Nair H., Brooks W.A., Katz M., et al. Global burden of respiratory infections due to seasonal influenza in young children: a systematic review and meta-analysis. Lancet. 2011;378(9807):1917–30. DOI: https://doi.org/10.1016/S0140-6736(11)61051-9
- Корчевая Е.Р., Грачева А.В., Дьяков И.Н. и др. Живые аттенуированные вакцины против COVID-19: подходы к разработке и перспективы клинического применения. Журнал микробиологии, эпидемиологии и иммунобиологии. 2023;100(3):225–236. Korchevaya E.R., Gracheva A.V., Dyakov I.N., et al. Live attenuated COVID-19 vaccines: approaches to development and prospects for clinical use. Journal of microbiology, epidemiology and immunobiology. 2023;100(3):225–236. DOI: https://doi.org/10.36233/0372-9311-404
- Брико Н.И., Коршунов В.А., Краснова С.В. и др. Клинико-эпидемиологические особенности пациентов, госпитализированных с COVID-19 в различные периоды пандемии в Москве. Журнал микробиологии, эпидемиологии и иммунобиологии. 2022;99(3):287–299. Briko N.I., Korshunov V.A., Krasnova S.V., et al. Clinical and epidemiological characteristics of hospitalized patients with COVID-19 during different pandemic periods in Moscow. Journal of microbiology, epidemiology and immunobiology. 2022;99(3):287–299. DOI: https://doi.org/10.36233/0372-9311-272
- Gusev E., Sarapultsev A., Solomatina L., Chereshnev V. SARS-CoV-2-specific immune response and the pathogenesis of COVID-19. Int. J. Mol. Sci. 2022;23(3):1716. DOI: https://doi.org/10.3390/ijms23031716
- Zanza C., Romenskaya T., Manetti A.C., et al. Cytokine storm in COVID-19: immunopathogenesis and therapy. Medicina (Kaunas). 2022;58(2):144. DOI: https://doi.org/10.3390/medicina58020144
- Brandes M., Klauschen F., Kuchen S., Germain R.N. A systems analysis identifies a feedforward inflammatory circuit leading to lethal influenza infection. Cell. 2013;154(1):197–212. DOI: https://doi.org/10.1016/j.cell.2013.06.013
- Mauad T., Hajjar L.A., Callegari G.D., et al. Lung pathology in fatal novel human influenza A (H1N1) infection. Am. J. Respir. Crit. Care Med. 2010;181(1):72–9. DOI: https://doi.org/10.1164/rccm.200909-1420OC
- Camp J.V., Bagci U., Chu Y.K., et al. Lower respiratory tract infection of the ferret by 2009 H1N1 pandemic influenza A virus triggers biphasic, systemic, and local recruitment of neutrophils. J. Virol. 2015;89(17):8733–48. DOI: https://doi.org/10.1128/JVI.00817-15
- Almutairi F., Sarr D., Tucker S.L., et al. RGS10 reduces lethal influenza infection and associated lung inflammation in mice. Front. Immunol. 2021;12:772288. DOI: https://doi.org/10.3389/fimmu.2021.772288
- Yao D., Bao L., Li F., et al. H1N1 influenza virus dose dependent induction of dysregulated innate immune responses and STAT1/3 activation are associated with pulmonary immunopathological damage. Virulence. 2022;13(1):1558–72. DOI: https://doi.org/10.1080/21505594.2022.2120951
- Herold S., Becker C., Ridge K.M., Budinger G.R. Influenza virus-induced lung injury: pathogenesis and implications for treatment. Eur. Respir. J. 2015;45(5):1463–78. DOI: https://doi.org/10.1183/09031936.00186214
- Dikiy S., Rudensky A.Y. Principles of regulatory T cell function. Immunity. 2023;56(2):240–55. DOI: https://doi.org/10.1016/j.immuni.2023.01.004
- Jansen K., Cevhertas L., Ma S., et al. Regulatory B cells, A to Z. Allergy. 2021;76(9):2699–715. DOI: https://doi.org/10.1111/all.14763
- Rosser E.C., Mauri C. Regulatory B cells: origin, phenotype, and function. Immunity. 2015;42(4):607–12. DOI: https://doi.org/10.1016/j.immuni.2015.04.005
- Catalán D., Mansilla M.A., Ferrier A., et al. Immunosuppressive mechanisms of regulatory B cells. Front. Immunol. 2021;12:611795. DOI: https://doi.org/10.3389/fimmu.2021.611795
- Martin F., Kearney J.F. B1 cells: similarities and differences with other B cell subsets. Curr. Opin. Immunol. 2001;13(2):195–201. DOI: https://doi.org/10.1016/s0952-7915(00)00204-1
- Suchanek O., Clatworthy M.R. Homeostatic role of B-1 cells in tissue immunity. Front. Immunol. 2023;14:1106294. DOI: https://doi.org/10.3389/fimmu.2023.1106294
- Liu F., Dai W., Li C., et al. Role of IL-10-producing regulatory B cells in modulating T-helper cell immune responses during silica-induced lung inflammation and fibrosis. Sci. Rep. 2016;6:28911. DOI: https://doi.org/10.1038/srep28911
- Chen Y., Li C., Lu Y., et al. IL-10-producing CD1dhiCD5+ regulatory B cells may play a critical role in modulating immune homeostasis in silicosis patients. Front. Immunol. 2017;8:110. DOI: https://doi.org/10.3389/fimmu.2017.00110
- Habener A., Behrendt A.K., Skuljec J., et al. B cell subsets are modulated during allergic airway inflammation but are not required for the development of respiratory tolerance in a murine model. Eur. J. Immunol. 2017;47(3):552–62. DOI: https://doi.org/10.1002/eji.201646518
- Braza F., Chesne J., Durand M., et al. A regulatory CD9(+) B-cell subset inhibits HDM-induced allergic airway inflammation. Allergy. 2015;70(11):1421–31. DOI: https://doi.org/10.1111/all.12697
- Gao X., Ren X., Wang Q., et al. Critical roles of regulatory B and T cells in helminth parasite-induced protection against allergic airway inflammation. Clin. Exp. Immunol. 2019;198(3):390–402. DOI: https://doi.org/10.1111/cei.13362
- Gautam A., Park B.K., Kim T.H., et al. Peritoneal cells mediate immune responses and cross-protection against influenza A virus. Front. Immunol. 2019;10:1160. DOI: https://doi.org/10.3389/fimmu.2019.01160
- Wang X., Ma K., Chen M., et al. IL-17A promotes pulmonary B-1a cell differentiation via induction of Blimp-1 expression during influenza virus infection. PLoS Pathog. 2016;12(1):e1005367. DOI: https://doi.org/10.1371/journal.ppat.1005367
- Дьяков И.Н., Сидорова Е.В. Субпопуляции В-лимфоцитов и влияние микроокружения на их функциональную активность. Пульмонология. 2010;(5):116–123. Dyakov I.N., Sidorova E.V. B-lymphocyte subpopulations: microenvironmental influence on functional activity. Pulmonology. 2010;(5):116–123. (In Russ.) EDN: https://elibrary.ru/LQBZTQ
- Дьяков И.Н. Влияние микроокружения на функциональную активность В лимфоцитов. Дис. … канд. биол. наук. М.; 2009. Dyakov I.N. Influence of the microenvironment on the functional activity of B lymphocytes. Diss. … Cand. Sci. (Biol.). Moscow; 2009. EDN: https://elibrary.ru/NKTUST
- Дьяков И.Н., Гаврилова М.В., Чернышова И.Н., Сидорова Е.В. Влияние микроокружения на функциональную активность В-лимфоцитов мыши. Биологические мембраны. 2008;25(5):360–6. Dyakov I.N., Gavrilova M.V., Chernyshova I.N., Sidorova E.V. The effect of the microenvironment on the functional activity of mouse B-lymphocytes. Biological Membranes. 2008;25(5):360–6. EDN: https://elibrary.ru/scgydb
Supplementary files


