The efficacy of bacteriophages in destroying biofilms on urinary catheters in experimental in vitro and in vivo models

Cover Image

Cite item

Abstract

Introduction. The formation of biofilms by healthcare-associated infection (HAI) pathogens on invasive medical devices is an increasingly urgent problem in clinical practice. Microbial biofilms contribute to persistent infections, complicate treatment, increase healthcare costs, and reduce the quality of patient care. The resistance of biofilm-embedded bacteria to antibiotics is a key factor in chronic and recurrent infections. In this context, bacteriophages may serve as a promising therapeutic agent against bacterial infections, including those caused by biofilm-forming microorganisms.

Objective. To assess the efficacy of lytic bacteriophages in disrupting microbial biofilms on urinary catheters using in vitro and in vivo experimental models.

Materials and methods. The study employed microbiological, morphological, and electron microscopy techniques. In vitro, biofilms were cultured on urinary catheter surfaces and subsequently treated with bacteriophages. For the in vivo model, catheter-associated urinary tract infection (CAUTI) was induced in mice, which were then divided into experimental and control groups. Bacteriophages were administered transurethrally.

Results. In the in vitro model, bacteriophages effectively disrupted biofilms, inducing bacterial cell lysis and degradation of the exopolysaccharide matrix. In the in vivo experiments, mice treated with bacteriophages exhibited regression of CAUTI, as confirmed by morphological and bacteriological analyses. Electron microscopy revealed biofilm destruction on 5 out of 6 catheters. In contrast, the positive control group showed progressive infection, while no biofilm formation was observed in the negative controls.

Conclusions. The findings from both in vitro and in vivo experiments demonstrate that bacteriophages are capable of degrading biofilms and may represent an effective therapeutic strategy against biofilm-associated HAIs.

About the authors

Batyrbek I. Aslanov

North-Western State Medical University named after I.I. Mechnikov; Smorodintsev Research Institute of Influenza

Email: batyrbek.aslanov@szgmu.ru
ORCID iD: 0000-0002-6890-8096

Dr. Sci. (Med.), Professor, Director, Institute of Preventive Medicine, Head, Department of epidemiology, parasitology and disinfection, North-Western State Medical University named after I.I. Mechnikov; leading researcher, Biotechnology depatment, Smorodintsev Research Institute of Influenza

Russian Federation, St. Petersburg; St. Petersburg

Sergei D. Konev

Saint Petersburg State University

Author for correspondence.
Email: sd-konev@yandex.ru
ORCID iD: 0000-0003-1919-4725

Head, Epidemiology department, N.I. Pirogov Clinic of High Medical Technologies

Russian Federation, St. Petersburg

Maria A. Makarova

North-Western State Medical University named after I.I. Mechnikov; Saint Petersburg Pasteur Institute

Email: makmaria@mail.ru
ORCID iD: 0000-0003-3600-2377

Dr. Sci. (Med.), Associate Professor, leading researcher, Head, Laboratory of intestinal infections, Saint Petersburg Pasteur Institute; Professor, Department of medical microbiology, North-Western State Medical University named after I.I. Mechnikov

Russian Federation, St. Petersburg; St. Petersburg

Nariman K. Gadzhiev

Saint Petersburg State University

Email: nariman.gadjiev@gmail.com
ORCID iD: 0000-0002-6255-0193

D. Sci. (Med.), urologist, deputy chief physician, Medical department (Urology), N.I. Pirogov Clinic of High Medical Technologies; Professor, Urology department, Medical Institute, Saint Petersburg State University

Russian Federation, St. Petersburg

Ivan A. Gorgotsky

Saint Petersburg State University

Email: igorgotsky@gmail.com
ORCID iD: 0000-0002-8514-5510

Cand. Sci. (Med.), urologist, deputy chief physician for outpatient clinical care, N.I. Pirogov Clinic of High Medical Technologies; Associate Professor, Urology department, Medical Institute, Saint Petersburg State University

Russian Federation, St. Petersburg

Alexey G. Kulyash

Saint Petersburg State University

Email: kulyash_patolog@bk.ru
ORCID iD: 0000-0002-9916-6232

Head, Laboratory of molecular genetic research, N.I. Pirogov Clinic of High Medical Technologies

Russian Federation, St. Petersburg

Konstantin V. Rozhkovan

Saint Petersburg State University

Email: tomcat-27@yandex.ru
ORCID iD: 0000-0002-8403-8342

Cand. Sci. (Biol.), biologist, Laboratory of molecular genetic research, N.I. Pirogov Clinic of High Medical Technologies

Russian Federation, St. Petersburg

Marina L. Vasyutina

Almazov National Medical Research Centre

Email: raluwow@gmail.com
ORCID iD: 0000-0002-3295-8411

researcher, Laboratory of bioprosthetics and cardioprotection, Institute of Experimental Medicine

Russian Federation, St. Petersburg

Lada A. Murashova

Almazov National Medical Research Centre

Email: barbosachka85@gmail.com
ORCID iD: 0000-0001-7155-1078

junior researcher, Research on neurogenesis and neurodegenerative diseases

Russian Federation, St. Petersburg

Anton S. Loshachenko

Saint Petersburg State University

Email: a.loshachenko@spbu.ru
ORCID iD: 0000-0002-1058-3452

Cand. Sci. (Phys., Math.), Director, Interdisciplinary Resource Center for Nanotechnology

Russian Federation, St. Petersburg

Vera V. Bryukhanova

Saint Petersburg State University

Email: verabryu@gmail.com
ORCID iD: 0000-0002-9862-1387

engineer, Interdisciplinary Resource Center for Nanotechnology

Russian Federation, St. Petersburg

Oksana V. Rybalchenko

Saint Petersburg State University

Email: o.rybalchenko@spbu.ru
ORCID iD: 0000-0001-9758-0053

Dr. Sci. (Med.), Professor, Department of physiology

Russian Federation, St. Petersburg

Anton S. Bondarenko

Scientific Technologies and Service LLC

Email: bond.anton@gmail.com
ORCID iD: 0000-0001-7707-1710

Cand. Sci. (Phys., Math.), technical director

Russian Federation, Chernogolovka

Anastasia M. Konstantinova

Saint Petersburg State University

Email: anastasia.konstantynova@gmail.com
ORCID iD: 0000-0002-2595-2249

Dr. Sci. (Med.), Associate Professor, Head, Department of pathology, N.I. Pirogov Clinic of High Medical Technologies

Russian Federation, St. Petersburg

Boris E. Galkovsky

Saint Petersburg State University

Email: mrc4se@gmail.com
ORCID iD: 0000-0002-5252-483X

Cand. Sci. (Med.), pathologist, Department of pathology, N.I. Pirogov Clinic of High Medical Technologies

Russian Federation, St. Petersburg

References

  1. Chinemerem Nwobodo D., Ugwu M.C., Oliseloke Anie C., et al. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J. Clin. Lab. Anal. 2022;36(9):e24655. DOI: https://doi.org/10.1002/jcla.24655
  2. Assefa M., Amare A. Biofilm-associated multi-drug resistance in hospital-acquired infections: a review. Infect. Drug. Resist. 2022;15:5061–8. DOI: https://doi.org/10.2147/IDR.S379502
  3. Sharma S., Mohler J., Mahajan S.D., et al. Microbial biofilm: a review on formation, infection, antibiotic resistance, control measures, and innovative treatment. Microorganisms. 2023;11(6): 1614. DOI: https://doi.org/10.3390/microorganisms11061614
  4. Shree P., Singh C.K., Sodhi K.K., et al. Biofilms: understanding the structure and contribution towards bacterial resistance in antibiotics. Med. Microecol. 2023;16(5):100084. DOI: https://doi.org/10.1016/j.medmic.2023.100084
  5. Grooters K.E., Ku J.C., Richter D.M., et al. Strategies for combating antibiotic resistance in bacterial biofilms. Front. Cell Infect. Microbiol. 2024;14:1352273. DOI: https://doi.org/10.3389/fcimb.2024.1352273
  6. Конев С.Д., Асланов Б.И., Ширай О.В. и др. Эпидемиологическая характеристика инфекций, вызванных биопленочными формами микроорганизмов, у пациентов с инвазивными медицинскими устройствами. Инфекционные болезни. 2025;23(2):53–60. Konev S.D., Aslanov B.I., Shirai O.V., et al. Epidemiological characterization of infections caused by biofilm-forming microorganisms in patients with invasive medical devices. Infectious Diseases. 2025;23(2):53–60. DOI: https://doi.org/10.20953/1729-9225-2024-4-21-25 EDN: https://elibrary.ru/lafcms
  7. Jamal M., Ahmad W., Andleeb S., et al. Bacterial biofilm and associated infections. J. Chin. Med. Assoc. 2018;81(1):7–11. DOI: https://doi.org/10.1016/j.jcma.2017.07.012
  8. Stewart P.S., Bjarnsholt T. Risk factors for chronic biofilm-related infection associated with implanted medical devices. Clin. Microbiol. Infect. 2020;26(8):1034–8. DOI: https://doi.org/10.1016/j.cmi.2020.02.027
  9. Muteeb G., Rehman M.T., Shahwan M., Aatif M. Origin of antibiotics and antibiotic resistance, and their impacts on drug development: a narrative review. Pharmaceuticals (Basel). 2023;16(11):1615. DOI: https://doi.org/10.3390/ph16111615
  10. Gliźniewicz M., Miłek D., Olszewska P., et al. Advances in bacteriophage-mediated strategies for combating polymicrobial biofilms. Front. Microbiol. 2024;14:1320345. DOI: https://doi.org/11.3389/fmicb.2023.1320345
  11. Liu S., Lu H., Zhang S., et al. Phages against pathogenic bacterial biofilms and biofilm-based infections: a review. Pharmaceutics. 2022;14(2):427. DOI: https://doi.org/10.3390/pharmaceutics14020427
  12. O'Toole G.A., Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol. Microbiol. 1998;28(3):449–61. DOI: https://doi.org/10.1046/j.1365-2958.1998.00797.x
  13. Конев С.Д. Адаптированный метод выявления биопленок на инвазивных устройствах, применяемых в урологической практике. Материалы конференции «Эйхвальдские чтения-2023». СПб.;2023. Konev S.D. An adapted method for detecting biofilms on invasive devices used in urological practice. In: Proceedings of the Conference «Eichwald Readings-2023». St. Petersburg;2023. EDN: https://elibrary.ru/cztntv
  14. Conover M.S., Flores-Mireles A.L., Hibbing M.E., et al. Establishment and characterization of UTI and CAUTI in a mouse model. J. Vis. Exp. 2015;23:(100):e52892. DOI: https://doi.org/10.3791/52892
  15. Асланов Б.И., Конев С.Д., Куляш А.Г. и др. Метод быстрой идентификации биопленок на инвазивных устройствах, применяемых в урологической практике. В кн.: Профилактическая медицина — 2022: сборник научных трудов Всероссийской научно-практической конференции с международным участием. СПб.;2022:22–6. Aslanov B.I., Konev S.D., Kulyash A.G., et al. Method fast identification of biofilms on invasive devices used in urological practice. In: Preventive Medicine — 2022: Collection of Scientific Papers of the All-Russian Scientific and Practical Conference with the Participation. St. Petersburg; 2022:22–6. EDN: https://elibrary.ru/zdwtqc
  16. Dagnaes-Hansen F., Kilian M., Fuursted K. Septicaemia associated with an Aerococcus viridans infection in immunodeficient mice. Lab. Anim. 2004;38(3):321–5. DOI: https://doi.org/10.1258/002367704323133718
  17. Gryaznova M., Smirnova Y., Burakova I., et al. Effect of probiotic bacteria on the gut microbiome of mice with lipopolysaccharide-induced inflammation. Microorganisms. 2024;12(7):1341. DOI: https://doi.org/10.3390/microorganisms12071341
  18. Zalewska-Piątek B. Phage therapy — challenges, opportunities and future prospects. Pharmaceuticals (Basel). 2023; 16(12):1638. DOI: https://doi.org/10.3390/ph16121638
  19. Li X., He Y., Wang Z., et al. A combination therapy of phages and antibiotics: two is better than one. Int. J. Biol. Sci. 2021;17(13):3573–82. DOI: https://doi.org/10.7150/ijbs.60551
  20. Gomes Dallepiane F., Alejandro Coimbra Nogueira M., Menezes Dos Anjos L., et al. Bacteriophages as potential therapeutic agents in the control of bacterial infections. EXCLI J. 2025;24:524–6. DOI: https://doi.org/10.17179/excli2025-8145
  21. Tian F., Li J., Nazir A., et al. Bacteriophage — a promising alternative measure for bacterial biofilm control. Infect. Drug Resist. 2021;14:205–17. DOI: https://doi.org/10.2147/IDR.S290093
  22. Kovacs C.J., Rapp E.M., McKenzie S.M., et al. Disruption of biofilm by bacteriophages in clinically relevant settings. Mil. Med. 2024;189(5-6):e1294–302. DOI: https://doi.org/10.1093/milmed/usad385
  23. Mayorga-Ramos A., Carrera-Pacheco S.E., Barba-Ostria C., et al. Bacteriophage-mediated approaches for biofilm control. Front. Cell Infect. Microbiol. 2024;14:1428637. DOI: https://doi.org/10.3389/fcimb.2024.1428637
  24. Zurabov F., Glazunov E., Kochetova T., et al. Bacteriophages with depolymerase activity in the control of antibiotic resistant Klebsiella pneumoniae biofilms. Sci. Rep. 2023;13:15188. DOI: https://doi.org/10.1038/s41598-023-42505-3
  25. Pallavali R.R., Degati V.L., Narala V.R., et al. Lytic bacteriophages against bacterial biofilms formed by multidrug-resistant Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus isolated from burn wounds. Phage (New Rochelle). 2021;2(3):120–30. DOI: https://doi.org/10.1089/phage.2021.0004
  26. Chen W., Han L.M., Chen X.Z., et al. Engineered endolysin of Klebsiella pneumoniae phage is a potent and broad-spectrum bactericidal agent against "ESKAPEE" pathogens. Front. Microbiol. 2024;15:1397830. DOI: https://doi.org/10.3389/fmicb.2024.1397830
  27. Shahed-Al-Mahmud M., Roy R., Sugiokto F.G., et al. Phage φAB6-borne depolymerase combats Acinetobacter baumannii biofilm formation and infection. Antibiotics (Basel). 2021;10(3):279. DOI: https://doi.org/10.3390/antibiotics10030279
  28. Fu W., Forster T., Mayer O., et al. Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob. Agents Chemother. 2010;54(1):397–404. DOI: https://doi.org/10.1128/AAC.00669-09
  29. Curtin J.J., Donlan R.M. Using bacteriophages to reduce formation of catheter-associated biofilms by Staphylococcus epidermidis. Antimicrob. Agents Chemother. 2006;50(4):1268–75. DOI: https://doi.org/10.1128/AAC.50.4.1268-1275.2006
  30. Cieślik M., Bagińska N., Górski A., et al. Animal models in the evaluation of the effectiveness of phage therapy for infections caused by gram-negative bacteria from the ESKAPE group and the reliability of its use in humans. Microorganisms. 2021;9(2):206. DOI: https://doi.org/10.3390/microorganisms9020206
  31. Mehmood Khan F., Manohar P., Singh Gondil V., et al. The applications of animal models in phage therapy: an update. Hum. Vaccin. Immunother. 2023;19(1):2175519. DOI: https://doi.org/10.1080/21645515.2023.2175519
  32. Singh A.N., Singh A., Nath G. Evaluation of bacteriophage cocktail on urinary tract infection caused by colistin-resistant Klebsiella pneumoniae in mice model. J. Glob. Antimicrob. Resist. 2024;39:41–53. DOI: https://doi.org/10.1016/j.jgar.2024.07.019

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Aslanov B.I., Konev S.D., Makarova M.A., Gadzhiev N.K., Gorgotsky I.A., Kulyash A.G., Rozhkovan K.V., Vasyutina M.L., Murashova L.A., Loshachenko A.S., Bryukhanova V.V., Rybalchenko O.V., Bondarenko A.S., Konstantinova A.M., Galkovsky B.E.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).