Impact of ESBL and MBL-producing Pseudomonas aeruginosa on Caenorhabditis elegans: assessing survival, reproductive fitness, chemotaxis behaviour, and gene expression

Cover Image

Cite item

Full Text

Abstract

Introduction. Nematode Caenorhabditis elegans is a key model for studying host–pathogen interactions. In our study, we explored the impact of extended-spectrum beta-lactamase (ESBL) and metallo-beta-lactamase (MBL) producing strains of Pseudomonas aeruginosa on C. elegans, examining survival, reproductive fitness, chemotaxis behaviour, and gene expression. Both ESBL and MBL-producing P. aeruginosa showed a slow killing phenotype in C. elegans, with prolonged gut colonization and reduced lifespan compared to worms fed Escherichia coli OP50.

Materials and methods. C. elegans N2 strain was exposed to ESBL/MBL-producing P. aeruginosa strains, non-resistant P. aeruginosa, and E. coli OP50. Survival, reproductive fitness, chemotaxis, and gene expression of daf-16 and age-1 were analyzed via assays and qRT-PCR.

Results. Resistant strains caused accelerated mortality, starting on day 2, while non-resistant strains had delayed mortality from day 5. This indicates that ESBL and MBL enzymes may boost P. aeruginosa's virulence. Worms exposed to these resistant strains had reduced fecundity, showing impaired reproductive fitness. Changes in chemotaxis behaviour suggested that virulence factors and quorum sensing might affect how worms seek food. Gene expression analysis revealed significant changes in daf-16, a gene involved in stress resistance and immunity, in response to ESBL and MBL strains. However, there were no significant differences in the expression of age-1, indicating other mechanisms at play besides insulin/insulin-like growth factor signalling.

Conclusion. This study highlights the complex interactions between bacterial virulence, host survival, and reproductive behaviour. By exploring the effects of antibiotic resistance on C. elegans, we offer insights into the broader implications of antibiotic-resistant infections and potential strategies for managing them.

About the authors

Janani Nandan

University of Madras

Email: jananinandan2014@gmail.com
ORCID iD: 0009-0000-9232-2784

M.Sc. (medical microbiology), researcher, Department of microbiology, Dr. A.L.M. PG Institute of Basic Medical Sciences

India, Chennai, Tamil Nadu

Anandhakrishnan Rajaram Heamchandsaravanan

University of Madras

Email: heamchand0314@gmail.com
ORCID iD: 0000-0003-3369-2587

M.Sc. (medical microbiology), researcher, Department of microbiology, Dr. A.L.M. PG Institute of Basic Medical Sciences

India, Chennai, Tamil Nadu

Charles Sharchil

University of Madras

Email: andrewchales@gmail.com
ORCID iD: 0000-0001-9055-0951

Ph.D. (Genetics), researcher, Department of genetics, Dr. A.L.M. PG Institute of Basic Medical Sciences

India, Chennai, Tamil Nadu

Vinu Ramachandran

University of Madras

Email: vinutwin@gmail.com
ORCID iD: 0000-0002-8566-7415

Ph.D. (Genetics), researcher, Department of genetics, Dr. A.L.M. PG Institute of Basic Medical Sciences

India, Chennai, Tamil Nadu

Damodharan Perumal

Indira Medical College and Hospitals

Email: 17damzz@gmail.com
ORCID iD: 0000-0001-5318-6513

Ph.D. (Medical microbiology), Assistant Professor, Department of microbiology

India, Pandur, Tamil Nadu

Anandan Balakrishnan

University of Madras

Author for correspondence.
Email: anand_gem@yahoo.com
ORCID iD: 0000-0003-4747-3799

Ph.D. (Genetics), Assistant Professor, Department of genetics, Dr. A.L.M. PG Institute of Basic Medical Sciences

India, Chennai, Tamil Nadu

Prabu Dhandapani

University of Madras

Email: bruibms@gmail.com
ORCID iD: 0000-0003-2866-4338

Ph.D. (Medical microbiology), Assistant Professor and Head i/c, Department of microbiology, Dr. A.L.M. PG Institute of Basic Medical Sciences

India, Chennai, Tamil Nadu

References

  1. Sifri C.D., Begun J., Ausubel F.M. The worm has turned – microbial virulence modeled in Caenorhabditis elegans. Trends Microbiol. 2005;13(3):119–27. DOI: https://doi.org/10.1016/j.tim.2005.01.003
  2. Tan M.W., Mahajan-Miklos S., Ausubel F.M. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc. Natl Acad. Sci. USA. 1999;96(2):715–20. DOI: https://doi.org/10.1073/pnas.96.2.715
  3. Tan M.W., Rahme L.G., Sternberg J.A., et al. Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc. Natl Acad. Sci. U. S. A. 1999;96(5):2408–13. DOI: https://doi.org/10.1073/pnas.96.5.2408
  4. Kirienko N.V., Cezairliyan B.O., Ausubel F.M., Powell J.R. Pseudomonas aeruginosa PA14 pathogenesis in Caenorhabditis elegans. Methods Mol. Biol. 2014;1149:653–69. DOI: https://doi.org/10.1007/978-1-4939-0473-0_50
  5. Heurlier K., Dénervaud V., Haas D. Impact of quorum sensing on fitness of Pseudomonas aeruginosa. Int. J. Med. Microbiol. 2006;296(2-3):93–102. DOI: https://doi.org/10.1016/j.ijmm.2006.01.043
  6. Bradford P.A. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 2001;14(4):933–51. DOI: https://doi.org/10.1128/CMR.14.4.933-951.2001
  7. Ghanem S.M., Abd El-Baky R.M., Abourehab M.A.S., et al. Prevalence of quorum sensing and virulence factor genes among Pseudomonas aeruginosa isolated from patients suffering from different infections and their association with antimicrobial resistance. Infect. Drug Resist. 2023;16:2371–85. DOI: https://doi.org/10.2147/IDR.S403441
  8. Moradali M.F., Ghods S., Rehm B.H. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front. Cell Infect. Microbiol. 2017;7:39. DOI: https://doi.org/10.3389/fcimb.2017.00039
  9. Riquelme S.A., Liimatta K., Wong Fok Lung T., et al. Pseudomonas aeruginosa utilizes host-derived itaconate to redirect its metabolism to promote biofilm formation. Cell Metab. 2020;31(6):1091–106.e6. DOI: https://doi.org/10.1016/j.cmet.2020.04.017
  10. Maurice N.M., Bedi B., Sadikot R.T. Pseudomonas aeruginosa biofilms: host response and clinical implications in lung infections. Am. J. Respir. Cell Mol. Biol. 2018;58(4):428–39. DOI: https://doi.org/10.1165/rcmb.2017-0321TR
  11. Edward E.A., El Shehawy M.R., Abouelfetouh A., Aboulmagd E. Prevalence of different virulence factors and their association with antimicrobial resistance among Pseudomonas aeruginosa clinical isolates from Egypt. BMC Microbiol. 2023;23(1):161. DOI: https://doi.org/10.1186/s12866-023-02897-8
  12. Bae I.K., Suh B., Jeong S.H., et al. Molecular epidemiology of Pseudomonas aeruginosa clinical isolates from Korea producing β-lactamases with extended-spectrum activity. Diagn. Microbiol. Infect. Dis. 2014;79(3):373–7. DOI: https://doi.org/10.1016/j.diagmicrobio.2014.03.007
  13. Irazoqui J.E., Troemel E.R., Feinbaum R.L., et al. Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus. PLoS Pathog. 2010;6(7):e1000982. DOI: https://doi.org/10.1371/journal.ppat.1000982
  14. Papaioannou E., Utari P.D., Quax W.J. Choosing an appropriate infection model to study quorum sensing inhibition in Pseudomonas infections. Int. J. Mol. Sci. 2013;14(9):19309–40. DOI: https://doi.org/10.3390/ijms140919309
  15. Hoffmann J.A., Kafatos F.C., Janeway C.A., Ezekowitz R.A. Phylogenetic perspectives in innate immunity. Science. 1999;284(5418):1313–8. DOI: https://doi.org/10.1126/science.284.5418.1313
  16. Balla K.M., Troemel E.R. Caenorhabditis elegans as a model for intracellular pathogen infection. Cell. Microbiol. 2013;15(8):1313–22. DOI: https://doi.org/10.1111/cmi.12152
  17. Baumeister R., Schaffitzel E., Hertweck M. Endocrine signaling in Caenorhabditis elegans controls stress response and longevity. J. Endocrinol. 2006;190(2):191–202. DOI: https://doi.org/10.1677/joe.1.06856
  18. Zarroug S.H.O., Bajaman J.S., Hamza F.N., et al. Caenorhabditis elegans as an in vivo model for the discovery and development of natural plant-based antimicrobial compounds. Pharmaceuticals (Basel). 2023;16(8):1070. DOI: https://doi.org/10.3390/ph16081070
  19. Adonizio A., Kong K.F., Mathee K. Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa by South Florida plant extracts. Antimicrob. Agents Chemother. 2008;52(1):198–203. DOI: https://doi.org/10.1128/AAC.00612-07
  20. Kurz C.L., Ewbank J.J. Caenorhabditis elegans: an emerging genetic model for the study of innate immunity. Nat. Rev. Genet. 2003;4(5):380–90. DOI: https://doi.org/10.1038/nrg1067
  21. Irazoqui J.E., Urbach J.M., Ausubel F.M. Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates. Nat. Rev. Immunol. 2010;10(1):47–58. DOI: https://doi.org/10.1038/nri2689
  22. Mahajan-Miklos S., Tan M.W., Rahme L.G., Ausubel F.M. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa – Caenorhabditis elegans pathogenesis model. Cell. 1999;96(1):47–56. DOI: https://doi.org/10.1016/s0092-8674(00)80958-7
  23. Wittkowski P., Marx-Stoelting P., Violet N., et al. Caenorhabditis elegans as a promising alternative model for environmental chemical mixture effect assessment – a comparative study. Environ. Sci. Technol. 2019;53(21):12725–33. DOI: https://doi.org/10.1021/acs.est.9b03266
  24. Zečić A., Braeckman B.P. DAF-16/FoxO in Caenorhabditis elegans and its role in metabolic remodeling. Cells. 2020;9(1):109. DOI: https://doi.org/10.3390/cells9010109
  25. Jia K., Thomas C., Akbar M., et al. Autophagy genes protect against Salmonella typhimurium infection and mediate insulin signaling-regulated pathogen resistance. Proc. Natl Acad. Sci. USA. 2009;106(34):14564–9. DOI: https://doi.org/10.1073/pnas.0813319106
  26. Singh V., Aballay A. Regulation of DAF-16-mediated innate immunity in Caenorhabditis elegans. J. Biol. Chem. 2009;284(51):35580–7. DOI: https://doi.org/10.1074/jbc.M109.060905
  27. Lin K., Dorman J.B., Rodan A., Kenyon C. daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science. 1997;278(5341):1319–22. DOI: https://doi.org/10.1126/science.278.5341.1319
  28. Li W.J., Wang C.W., Tao L., et al. Insulin signaling regulates longevity through protein phosphorylation in Caenorhabditis elegans. Nat. Commun. 2021;12(1):4568. DOI: https://doi.org/10.1038/s41467-021-24816-z
  29. Cheng C.L., Gao T.Q., Wang Z., Li D.D. Role of insulin/insulin-like growth factor 1 signaling pathway in longevity. World J. Gastroenterol. 2005;11(13):1891–5. DOI: https://doi.org/10.3748/wjg.v11.i13.1891

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Nandan J., Heamchandsaravanan A.R., Sharchil C., Ramachandran V., Perumal D., Balakrishnan A., Dhandapani P.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).