Kontrast Remsi-KPN rezonansov v tushashchikh i depolyarizuyushchikh gazakh

Abstract

Молекулярный азот часто используется в качестве буферного газа в ячейках с щелочными металлами благодаря его известному свойству тушения флуоресценции. Широко распространено мнение, что устранение спонтанного излучения уменьшает ширину резонанса когерентного пленения населенностей. Однако наши недавние результаты не подтвердили это положительное действие молекулярного азота в типичных диапазонах концентраций 87Rb и давлений буферных газов. Напротив, экспериментально наблюдалось негативное влияние тушения – контраст резонанса когерентного пленения населенностей в σ+-σ+ конфигурации полей был ниже в ячейках с молекулярным азотом. В данной работе эти результаты получают подтверждение в импульсной схеме регистрации резонанса когерентного пленения населенностей методом Рэмси-спектроскопии. В работе приводятся результаты сравнения характеристик центрального резонанса Рэмси в молекулярном азоте и в неоне, показано, что применение неона обеспечивает лучшее соотношение контраста к ширине.

References

  1. J. Kitching, Appl. Phys. Rev. 5, 031302 (2018).
  2. M. S. Grewal, L. R. Weill, and A. P. Andrews, Global Positioning Systems, Inertial Navigation, and Integration, Wiley-Interscience, Hoboken, NJ (2007).
  3. Z. Warren, H. Kettering, and J. Camparo, in: Proceedings of the 52nd Annual Precise Time and Time Interval Systems and Applications Meeting (2021). URL: https://www.ion.org/publications/browse.cfm?proceedingsID=154.
  4. Microchip Technology Incorporated, https://ww1.microchip.com/downloads/en/DeviceDoc/00003876.pdf.
  5. M. Travagnin, Joint Research Center, https://publications.jrc.ec.europa.eu/repository/handle/JRC125394.
  6. J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards, CRC Press, Boca Raton (1989).
  7. W. Happer, Rev. Mod. Phys. 44, 169 (1972).
  8. W. Franzen and A. G. Emslie, Phys. Rev. 108, 1453 (1957).
  9. A. I. Okunevich and V. I. Perel’, Soviet Physics JETP 31, 666 (1970).
  10. K. M Sabakar, M. I. Vaskovskaya, D. S. Chuchelov, E. A. Tsygankov, V. V. Vassiliev, S. A. Zibrov, and V. L. Velichansky, Phys. Rev. Appl. 20, 034015 (2023).
  11. N. F. Ramsey, Rev. Sci. Instrum. 28, 57 (1957).
  12. C. Carlé, M. Petersen, N. Passilly, M. A. Hafiz, E. de Clercq, and R. Boudot, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68, 3249 (2021).
  13. C. Carlé, M. A Hafiz, S. Keshavarzi, R. Vicarini, N. Passilly, and R. Boudot, Opt. Express 31(5), 8160 (2023).
  14. M. Abdel Hafiz, C. Carlé, N. Passilly, J. M. Danet, C. E. Calosso, and R. Boudot, Appl. Phys. Lett. 120 (6), (2022).
  15. T. Zanon, S. Guerandel, E. de Clercq, D. Holleville, N. Dimarcq, and A. Clairon, Phys. Rev. Lett. 94(19), 193002 (2005).
  16. J. Vanier and C. Mandache, Appl. Phys. B 87, 565 (2007).
  17. G. A. Pitz, A. J. Sandoval, T. B. Tafoya, W. L. Klennert, and D. A. Hostutler, Journal of Quantitative Spectroscopy & Radiative Transfer 140, 18 (2014).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Российская академия наук

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).