Sequences of partial sums of multiple trigonometric Fourier series
- 作者: Konyagin S.V.1,2
-
隶属关系:
- Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
- 期: 卷 216, 编号 3 (2025)
- 页面: 108-127
- 栏目: Articles
- URL: https://bakhtiniada.ru/0368-8666/article/view/306689
- DOI: https://doi.org/10.4213/sm10231
- ID: 306689
如何引用文章
详细
Let $f$ be an integrable $2\pi$-periodic function of $d\ge2$ variables. For a bounded subset $A$ of the $d$-dimensional space let $S_A(f)$ denote the sum of terms of the Fourier series of $f$ with frequencies in $A$. The following problem is addressed: given a sequence $\{A_j\}$ of bounded convex sets, do there exist a function $f$ and a sequence $\{j_\nu\}$ such that $\lim_{\nu\to\infty} |S_{A_{j_\nu}} (f)|=\infty$ almost everywhere? Bibliography: 5 titles.
作者简介
Sergei Konyagin
Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia; Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
编辑信件的主要联系方式.
Email: konyagin@mi-ras.ru
Doctor of physico-mathematical sciences, Professor
参考
- С. В. Конягин, “О сходимости подпоследовательности частичных сумм многомерного тригонометрического ряда Фурье по Прингсхейму”, Труды МИАН, 323, Теория функций многих действительных переменных и ее приложения (2023), 167–180
- A. Kolmogoroff, “Sur les fonctions harmoniques conjuguees et les series de Fourier”, Fund. Math., 7 (1925), 24–29
- О. Н. Герман, Ю. В. Нестеренко, Теоретико-числовые методы в криптографии, Изд. центр “Академия”, М., 2012, 270 с.
- В. А. Юдин, “Оценка снизу констант Лебега”, Матем. заметки, 25:1 (1979), 119–122
- G. H. Hardy, J. E. Littlewood, “Some new properties of Fourier constants”, Math. Ann., 97:1 (1927), 159–209
补充文件
